ST.ANNE'S COLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING THERMAL ENGINEERING- I

UNIT I - GAS AND STEAM POWER CYCLES

1. For a given compression ratio otto cycle is more efficient than diesel cycle. Justify. (Nov 2013)

Area under P-V diagram is more that the diesel cycle. When the area is more, workdone for that cycle is more. So, the efficiency for otto cycle will be higher than diesel cycle.

2. What is meant by mean effective pressure? (Nov 2013) (May 2016) (Nov 2017) (Nov 2014)

It is hypothetical pressure which is acting on the piston during the power stroke. Mean effective pressure = workdone /stroke volume

3. Mention the ranges of compression ratio for SI and CI engine.(May 2013)

SI engine 6-10

CI engine 16-20

4. What is relative efficiency? (May 2013)

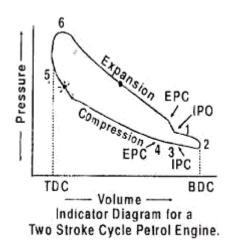
It is defined as the ratio between actual thermal efficiency and air standard efficiency

$$\eta_{relative} = \frac{Actual\ thermal\ efficiency}{Air\ stsnderd\ efficiency}$$

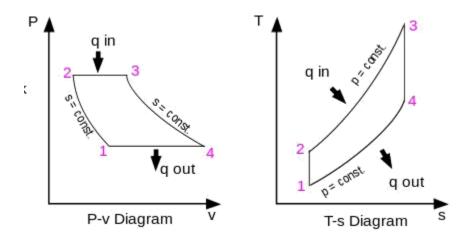
5. What is meant by Air standard efficiency.(May 2014)(Apr 2017)

It is defined as the ratio of work done by the cycle to the heat supplied to the cycle.

6. Define compression ratio and cut off ratio. (May 2014)


Compression ratio:

It is defined as the ratio between total cylinder volumes to the clearance volume.


Cut off ratio:

It is defined as the ratio of volume after the heat addition to volume before the heat addition.

7. Draw the actual PV diagram of two stroke engine.(Nov 2014)

8. Draw the brayton cycle on p-v and T-s diagram. (May 2015)(Apr 2017)

9. When compression ratio is kept constant, what is the effect of cut off ratio on the efficiency of diesel cycle. (Nov 2015)

When cut off ratio of diesel cycle increases, the efficiency of cycle is decreased when compression ratio is kept constant.

10. Differentiate any three major differences between otto and diesel cycle. (Nov 2015,2016)

S.No	Otto cycle	Diesel cycle
1	Efficiency is less due to low	Efficiency is more due to low
	compression ratio	compression ratio
2	Fuel is admitted into the cylinder	Air alone is admitted in to the cylinder
	during suction stroke	during suction stroke
3	Spark ignition system is used for	Compression ignition system is used for
	ignition.	ignition.

11. What are the assumptions made in the air standard cycle.(May 2016) (Nov 2016) (May 2015)

- The work medium is a perfect gas throughout.
- The working medium does not undergo chemical change through the cycle.
- Kinetic and potential energies of the working fluid are neglected.
- The operation of the engine is frictionless

12. Write down the air standard efficiency for otto and diesel cycle. (Nov 2017)

$$\eta_{Otto} = 1 - \frac{1}{\left(r\right)^{r-1}}$$

$$\eta_{diesel} = 1 - \frac{1}{\gamma(r)^{\gamma-1}} \left[\frac{\rho^{\gamma} - 1}{\rho - 1} \right]$$

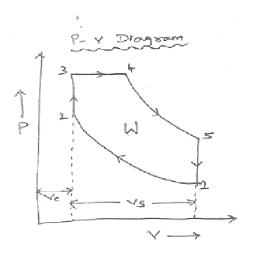
13. Write an expression for mean effective pressure for an Otto cycle interns of compression ratio and other parameters

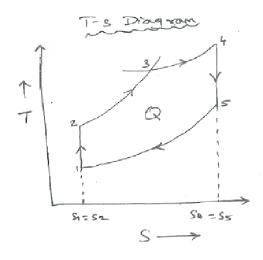
$$p_{\scriptscriptstyle m} = p_{\scriptscriptstyle 1} r \bigg(\frac{k-1}{\gamma-1}\bigg) \bigg(\frac{r^{\gamma-1}-1}{r-1}\bigg)$$

Where,

P₁= initial pressure

r = compression ratio


k = Pressure ratio


 $\gamma = Adiabatic index$

14. For the same compression ratio and heat supplied, state the order of decreasing of Otto, diesel and dual cycle.

$$\eta_{Otto} > \eta_{dual} > \eta_{diesel}$$

- 15. What are the effects of introducing regeneration in the basic gas turbine cycle?
 - The fuel economy is improved the quantity of the fuel required per unit mass of air is less.
 - The work output from the turbine, work required to the compressor will not change.
 - Pressure drop will occur during regeneration.
 - It increases the thermal efficiency when the low pressure ratio reduces.
- 16. Sketch the dual cycle on P-V and T-S co-ordinates.

17. Define Expansion ratio.

It is the ratio of volume after the expansion to the volume before expansion.

18. What is the expression for optimum pressure ratio for maximum specific work output in brayton cycle.

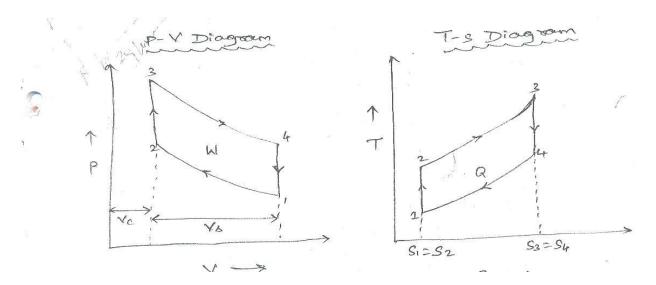
Optimum pressure ratio,
$$R_p = \left(\frac{T_3}{T_1}\right)^{\frac{\gamma}{2(\gamma-1)}}$$

19. Is it always useful to have a regenerator a gas turbine power cycle? Why?

It is not always useful to have a regenerator a gas turbine power cycle. Regenerator causes pressure drop of 0.035 to 0.2bar in compressed air and about 0.035bar in exhaust gases. These pressure drop affect to a contained extend the gain in efficiency due to regenerated.

- 20. Name the factors that affect air standard efficiency of diesel cycle.
- Compression

ratio • Cut off ratio


16-MARKS:

DERIVATION:

1. <u>Derive an expression for air standard efficiency and mean effective pressure of Otto Cycle.</u>(May/June-13)

This cycle consist of the following four processes.

- 1. Two reversible adiabatic process or isentropic process.
- 2. Two constant volume process.

Process 1-2:

- 1. Process 1-2 is the isentropic compression process.
- 2. Pressure increases from P₁ to P₂ and temperature increases from T₁ to T₂.
- 3. Volume decreases from V_1 to V_2 .
- 4. Entropy remains constant.

Process 2-3:

- 1. Process 2-3 is a constant volume heat addition process.
- 2. Pressure increases from P₂ to P₃.
- 3. Temperature increases from T₂ to T₃.
- 4. Entropy increases from S₂ to S₃ or S₁ to S₃.
- 5. Volume remains constant.

$$Q_{s} = m C_{v} [T_{3}-T_{2}]$$

Process 3-4:

- 1. Process 3-4 is an isentropic expansion process.
- 2. Pressure decreases from P₃ to P₄.
- 3. Temperature decreases from T₃ to T₄.
- 4. Volume increases from V₃ to V₄.
- 5. Entropy remains constant.

Process 4-1:

- 1. Process 4-1 is a volume heat addition process.
- 2. Pressure decreases from P₄ to P₁.
- 3. Temperature decreases from T_4 to T_1 .
- 4. Entropy decreases from S₄ to S₁.

Heat rejected during 4-1, $Q_R = m C_V [T_4-T_1]$

Work done during cycle, $W = Heat \ supplied - Heat$

rejected =
$$Q_S$$
- Q_R

$$= m C_V [T_3-T_2] - m C_V [T_4-T_1]$$

Efficiency,
$$\eta$$
 Otto = $\frac{Q \text{ S-Q R}}{Q \text{ S}}$

$$= m C_v [T_3-T_2] - m C_v [T_4-T_1]$$

$$= 1 - [T_4-T_1]$$

$$[T_3-T_2]$$

From p-v diagram,

Total cylinder volume = $V_1 = V_4$

$$Clearance\ volume = V_c = V_2 = V_3$$

Stroke volume =
$$V_S = [V_1-V_2] = [V_4-V_3]$$

Compression ratio (r):

Compression ratio,
$$r = \frac{V_1}{V} = \frac{V_4}{V}$$

Process 1-2,

$$\frac{T}{T_{2}} = \left(\left| \frac{V_{1}}{V_{2}} \right| \right)^{\gamma-1} = (r)^{\gamma-1}$$

$$T_2 = T_1 \times (r)^{\gamma - 1}$$

Process 3-4,

$$\frac{T}{T_{4}} = \left(\left| \frac{V_{4}}{V_{3}} \right| \right)^{\gamma - 1} = (r)^{\gamma - 1}$$

$$T_3 = T_4 \times (r)^{\gamma - 1}$$

Substitute T_2 and T_3 value in η_{Otto} ,

$$\eta_{Otto} = 1 - \frac{T_4 - T_1}{T_4(r)^{\gamma - 1} - T_1(r)^{\gamma - 1}}$$

$$= 1 - \frac{T_4 - T_1}{(T_4 - T_1)(r)^{\gamma - 1}}$$

$$\eta_{Otto} = 1 - \frac{1}{\left(r\right)^{\gamma-1}}$$

Mean effective pressure [pm]:

Least clearance volume be units i.e., V₂=V₃=1

$$V_1 = V_4 = r$$

$$\frac{p_4}{p_1} = \frac{p_3}{p_2} = k \, (Pressure \, ratio)$$

From Pressure 1-2, reversible adiabatic,

$$\begin{array}{ccc}
p & (V) & \gamma \\
\hline
-2 & = & 1 & | & --- & |
\end{array}$$

$$= (r)^{\gamma}$$

$$= \frac{p_3}{p}$$

Work done,
$$W = \frac{p_3V_3 - p_4V_4}{\gamma - 1} - \frac{p_2V_2 - p_1V_1}{\gamma - 1}$$

$$= \frac{1}{\gamma - 1} \left[v \int_{3}^{\gamma} \left[p - p \int_{4}^{\gamma} \left[\frac{V}{v_{s,j}} \right] \right] - V \int_{2}^{\gamma} \left[p - p \int_{1}^{\gamma} \left[\frac{V}{v_{s,j}} \right] \right] \right]$$

$$= \frac{1}{\gamma - 1} \left[v \int_{3}^{\gamma} \left[p - p \int_{4}^{\gamma} \left[\frac{P}{p_{4}} \right] - \left[p - p \int_{2}^{\gamma} \left[\frac{P}{p_{1}} \right] \right] \right]$$

$$= \frac{1}{\gamma - 1} \left[v \int_{4}^{\gamma} \left[\frac{P}{p_{4}} \right] - v \int_{1}^{\gamma} \left[\frac{P}{p_{1}} \right] \right]$$

$$= \frac{1}{\gamma - 1} \left[v \int_{4}^{\gamma} \left[\frac{P}{p_{4}} \right] - v \int_{1}^{\gamma} \left[\frac{P}{p_{1}} \right] \right]$$

$$= \frac{1}{\gamma - 1} \left[v \int_{4}^{\gamma} \left[\frac{P}{r} \right] - v \int_{1}^{\gamma} \left[\frac{P}{r} \right] \right]$$

$$= \frac{P}{\gamma} - 1 \left(r^{\gamma - 1} - 1 \right) \left(p_{4} - p_{1} \right)$$

$$= \frac{P}{\gamma} - 1 \left(r^{\gamma - 1} - 1 \right) \left(p_{4} - p_{1} \right)$$

$$= \frac{P}{\gamma} - 1 \left(r^{\gamma - 1} - 1 \right) \left(p_{4} - p_{1} \right)$$

$$= \frac{P}{\gamma} - 1 \left(r^{\gamma - 1} - 1 \right) \left(p_{4} - p_{1} \right)$$

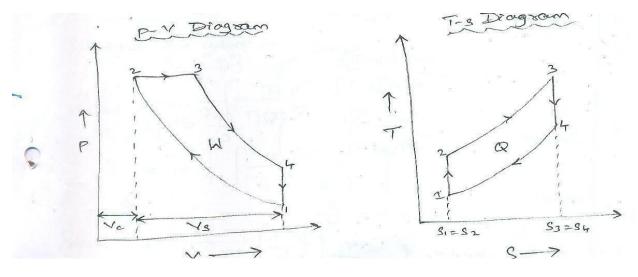
Work done $= y^{p-r} (r^{\gamma-1} - 1)(k-1)$

stroke volume = $V_1 - V_2$

$$=V_{2}\left(\underbrace{V_{1} - 1}_{2}\right)$$

$$=r-1 \qquad (\therefore V_{2} = 1)$$

$$p_{m} = \frac{\textit{Work done}}{\textit{stroke volume}}$$


$$p = p r(k-1)(r^{\gamma-1}-1)$$

$$m_1 \mid_{\gamma-1} \mid_{\gamma-1} \mid_{\gamma-1}$$

2. Derive an expression for air standard efficiency and mean effective pressure of Diesel Cycle. (May/June-2013)

This cycle consist of the following four processes.

- 1. Two reversible adiabatic process or isentropic process.
- 2. One constant volume process.
- 3. One constant pressure process.

Process1-2:

- 1. Process 1-2 is the isentropic compression process.
- 2. Air is compressed isentropically P₁ to P₂.
- 3. Entropy remains constant.

Process2-3:

- 1. Process 2-3 is a constant pressure heat addition process.
- 2. Air is heated from T2 to T2 but pressure remains constant.
- 3. Heat is supplied during the process, $Qs = mc_p [T_3-T_2]$

Process3-4:

- 1. Process 3-4 is an isentropic expansion process.
- 2. Air is expands isentropically P₁ to P₂.
- 3. Temperature decreases from T_3 to T_4 .

Process4-1:

- 1. Process 1-4 is a constant volume heat rejection process.
- 2. Heat is rejected from air but volume remains constant.
- 3. Temperature decreases from T_4 to T_1 .
- 4. Heat rejected, $Q_R = mc_V [T_4-T_1]$.

Efficiency of diesel cycle,

$$\eta$$
 diesel = Qs-Qr / Qs

$$= \frac{mCp(T 3-T2)-mCv(T4-T1)}{mCp(T 3-T2)}$$

$$=1-\frac{mCv(T4-T1)}{mCp(T3-T2)}$$

$$\eta$$
 diesel = $1 - \frac{(T4-T1)}{Y \times (T3-T2)}$

W.K.T,

Compression ratio, $r = v_1/v_2$

Cut off ratio, $\rho = v_3/v_2$

Expansion ratio $= v_4/v_3$

 $= v_1/v_3$

 $= v_1/v_2 \times v_2/v_3$

 $= r \times 1/\rho$

Process1-2,

$$T_2/T_1 = (V_1/V_2)^{Y-1}$$

= $(r)^{Y-1}$
 $T_2 = T_1 (r)^{Y-1}$

Process2-3,

$$V_2/T_2 = V_3/T_3$$

$$T_3/T_2 = V_3/V_2 = \rho$$

$$T_3 = T_2 \times \rho$$
 (Where, $T_2 = T_1(r)^{Y-1}$)

 $T_3 = T_1(r)^{Y-1} \rho$

Process3-4,

$$T_3/T_4 = (V_4/V_3)^{Y-1}$$

= $(r/\rho)^{Y-1}$
 $T_4 = T_3/(r/\rho)^{Y-1}$
= $T_1(r)^{Y-1}\rho/(r/\rho)^{Y-1}$

=
$$T_1(r)^{Y-1} \rho. \rho^{Y-1}/(r)^{Y-1}$$

 $T_4 = T. \rho^{Y}$

Substitute the value in efficiency diesel,

$$\eta_{Diesel} = 1 - \frac{1}{\gamma} \left[\frac{T_1 \rho^{\gamma} - T_1}{T_1(r)^{\gamma - 1} \rho - T_1(r)^{\gamma - 1}} \right]$$

$$= 1 - \frac{1}{\gamma} \left[\frac{T_1 \left(\rho^{\gamma} - 1 \right)}{T_1 r^{\gamma - 1} \left(\rho - 1 \right)} \right]$$

$$\eta_{diesel} = 1 - \frac{1}{\gamma(r)^{\gamma - 1}} \left[\frac{\rho^{\gamma} - 1}{\rho - 1} \right]$$

Mean effective pressure (Pm):

Work done during the cycle,

$$W = p_{2}(V_{3} - V_{2}) + \frac{p_{3}V_{3} - p_{4}V_{4}}{\gamma - 1} - \frac{p_{2}V_{2} - p_{1}V_{1}}{\gamma - 1}$$

$$= p_{2}V_{2}(\rho - 1) + \frac{p_{3}V_{2}\rho - p_{4}V_{2}r}{\gamma - 1} - \frac{p_{2}V_{2} - p_{1}rV_{2}}{\gamma - 1} \left[\because \frac{V_{3}}{V_{2}} = \rho; \frac{V_{4}}{V_{2}} = r \right]$$

$$= \frac{V_{2}[p_{2}(\rho - 1)(\gamma - 1) + (p_{3}\rho - p_{4}r) - (p_{2} - p_{1}r)]}{\gamma - 1}$$

$$= \frac{V_{2} \left[p_{2} (\rho - 1) (\gamma - 1) + p_{2} \left(\rho - \frac{p_{4}}{p_{2}} r \right) - p_{2} \left(1 - \frac{p_{1}}{p_{2}} r \right) \right]}{\gamma - 1} \left[\because p_{3} = p_{2} \right]$$

$$= \frac{p_{2} V_{2} \left[(\rho - 1) (\gamma - 1) + \left[\rho - \left(\frac{\rho}{r} \right)^{\gamma} \times r \right] - \left(1 - \frac{r}{r^{\gamma}} \right) \right]}{\gamma - 1}$$

$$\left[\because \frac{p_{1}}{p_{2}} = \left(\frac{V_{2}}{V_{1}} \right)^{\gamma} = \frac{1}{r^{\gamma}} \right] \left[\because \frac{p_{4}}{p_{2}} = \frac{p_{4}}{p_{3}} = \left(\frac{V_{3}}{V_{4}} \right)^{\gamma} = \left(\frac{\rho}{r} \right)^{\gamma} \right]$$

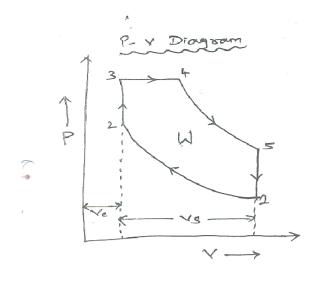
$$= \frac{p_1 V_1 r^{\gamma - 1} \left[(\rho - 1) (\gamma - 1) + (\rho - \rho^{\gamma} r^{1 - \gamma}) - (1 - r^{1 - \gamma}) \right]}{\gamma - 1}$$

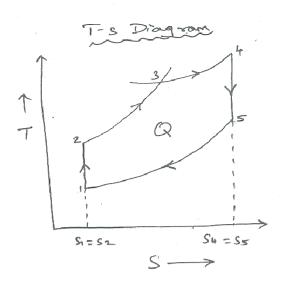
$$= \frac{p_1 V_1 r^{\gamma - 1} \left(\rho \gamma - \gamma - \rho + 1 + \rho - \rho^{\gamma} r^{1 - \gamma} - 1 + r^{1 - \gamma} \right)}{\gamma - 1}$$

$$= \frac{p_1 V_1 r^{\gamma - 1} \left(\gamma (\rho - 1) - r^{1 \gamma} (\rho^{\gamma} - 1) \right)}{\gamma - 1}$$

Man effective pressure is given by,

$$P_{m} = \frac{W}{V_{1} - V_{2}} = \frac{p_{1}V_{1} r^{\gamma - 1} \left(\gamma(\rho - 1) - r^{1 - \gamma}(\rho^{\gamma} - 1)\right)}{(\gamma - 1)V_{1}\left(1 - \frac{1}{r}\right)}$$


$$= \frac{p_{1} r^{\gamma - 1} \left(\gamma(\rho - 1) - r^{1 - \gamma}(\rho^{\gamma} - 1)\right)}{(\gamma - 1)\left(\frac{r - 1}{r}\right)}$$


$$p_{m} = \frac{p_{1} r^{\gamma} \left(\gamma(\rho - 1) - r^{1 - \gamma}(\rho^{\gamma} - 1)\right)}{(\gamma - 1)(r - 1)}$$

3. Derive an expression for air standard efficiency and mean effective pressure of Dual Cycle. (May/Jun-14)

This cycle consist of the following process.

- 1. Two reversible adiabatic process or isentropic process.
- 2. Two constant volume process.
- 3. Two constant pressure process.

Process1-2:

- 1. Process 1-2 is the isentropic compression process.
- 2. Air is compressed isentropically P_1 to P_2 .
- 3. Entropy remains constant.

Process2-3:

- 1. Process 2-3 is a constant volume heat addition process.
- 2. Compressed air is partially heated by constant volume process.
- 3. Temperature increases from T_2 to T_3 .
- 4. Entropy increases from S₂ to S₃.

Heat supplied during the process, $Q_{s1} = mc_V[T_3-T_2]$

Process3-4:

- 1. Process 3-4 is a constant pressure heat addition process.
- 2. Partially heated air is then heated by constant pressure process.
- 3. Temperature and entropy increases from T₃ to T₄ and S₃ to S₄.

Heat supplied during the process, $Q_{s2} = mc_p[T_4-T_3]$

Process4-5:

- 1. Process 4-5 is an isentropic expansion process.
- 2. Air is expands isentropically from P₄ to P₅.
- 3. Temperature decreases from T₄ to T₅.

Process5-1:

- 1. Process 5-1 is a constant volume heat rejection process.
- 2. Heat is rejected from the air volume remains constant.
- 3. Temperature decreases from T_5 to T_1 and entropy decreases from S_5 to S_1 .
- 4. Heat rejected, $Q_R = mc_V [T_5-T_1]$.

Total heat supplied during heat addition,

$$Qs = Qs_1 + Qs_2$$

= $mc_V [T_3-T_2] + mc_p[T_4-T_3]$

Air standard efficiency, $\eta = W/Qs = Qs - Q_R / Qs$

$$\eta = \frac{W}{Q_s} = \frac{Q_s - Q_R}{Q_s}$$

$$= \frac{m C_V (T_3 - T_2) + m C_P (T_4 - T_3) - m C_V (T_5 - T_1)}{m C_V (T_3 - T_2) + m C_P (T_4 - T_3)}$$

$$\eta = 1 - \frac{(T_5 - T_1)}{(T_3 - T_2) + \gamma (T_4 - T_3)}$$

W.K.T,

Compression ratio,
$$\Upsilon = V_1/V_2$$

Pressure ratio,
$$k = P_3/P_2$$

Cut off ratio,
$$\rho = V_4/V_3$$

Expansion ratio,
$$V_5/V_4 = V_1/V_4$$

$$= V_1/V_2 \times V_2/V_4$$

$$= V_1/V_2 \times V_3/V_4$$

$$= \frac{\Upsilon}{\rho}$$

Process1-2,

$$T_2/T_1 = [V_1/V_2]^{Y-1} = r^{Y-1}$$
 $T_2 = T_1 r^{Y-1}$

Process2-3,

$$P_2/T_2 = P_3/T_3$$
 $T_3 = [P_3/P_2] T_2$
 $T_3 = K T_1 r^{Y-1}$

Process3-4,

$$V_3/T_3 = V_4/T_4$$
 $T_4 = [V_4/V_3] T_3$
 $= \rho K T_1 r^{Y-1}$

Process4-5,

$$T_4/T_5 = [V_5/V_4]^{Y-1} = [r/\rho]^{Y-1}$$
 $T_5 = T_4/[r/\rho]^{Y-1}$
 $= T_4 \rho^{Y-1}/r^{Y-1}$
 $T_5 = T_1$. K. ρ^{Y}

Substitute in efficiency,

$$\eta = 1 - \frac{T_1 k \rho^{\gamma} - T_1}{[T_1(r)^{\gamma-1} k - T_1(r)^{\gamma-1}] + \gamma [T_1(r)^{\gamma-1} k \rho - T_1(r)^{\gamma-1} k]}$$

$$=1-\frac{T_{1}[k \rho^{\gamma}-1]}{T_{1}(r)^{\gamma-1}[(k-1)+\gamma k(\rho-1)]}$$

$$\eta_{Dual} = 1 - \frac{1}{(r)^{\gamma-1}} \left[\frac{k \rho^{\gamma} - 1}{(k-1) + \gamma k (\rho - 1)} \right]$$

Note:

When k=1 efficiency of dual reduces to efficiency of diesel.

When k=1 and $\eta=1$ efficiency of dual reduces to efficiency of OTTO. Mean effective pressure,

Work done,

$$W = p_3 (V_4 - V_3) + \frac{p_4 V_4 - p_5 V_5}{\gamma - 1} - \frac{p_2 V_2 - p_1 V_1}{\gamma - 1}$$
$$= p_3 V_3 (\rho - 1) + \frac{p_4 \rho V_3 - p_5 r V_3 - p_2 V_3 - p_1 r V_3}{\gamma - 1}$$

$$\begin{bmatrix} \cdot \cdot \cdot \rho = \frac{V_4}{V_3}; V_4 = \rho V_3; V_2 = V_3 \\ V_5 = V_1 \text{ multiply and divided by } V_2 \\ V_5 = V_1 \times \frac{V_2}{V_2} = r V_2 = r V_3 \\ \frac{V_1}{V_2} = r \Rightarrow V_1 = r V_2 = r V_3 \end{bmatrix}$$

$$= \frac{p_3 V_3 (\rho - 1)(\gamma - 1) + p_4 V_3 \left(\rho - \frac{p_5}{p_4} r\right) - p_2 V_3 \left(1 - \frac{p_1}{p_2} r\right)}{\gamma - 1}$$

By substituting the values in above equation,

$$\frac{p_{5}}{p_{4}} = \left(\frac{V_{4}}{V_{5}}\right)^{\gamma} = \left(\frac{\rho}{r}\right)^{\gamma}$$

$$\frac{p_{2}}{p_{1}} = \left(\frac{V_{1}}{V_{2}}\right)^{\gamma} = (r)^{\gamma}$$

$$\therefore W = \frac{V_{3}\left[p_{3}(\rho - 1)(\gamma - 1) + p_{3}(\rho - \rho^{\gamma}r^{1-\gamma}) - p_{2}(1 - r^{1-\gamma})\right]}{\gamma - 1}$$

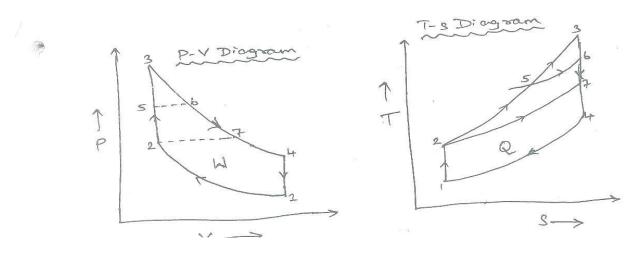
$$= \frac{p_{2}V_{2}\left[k(\rho - 1)(\gamma - 1) + k(\rho - \rho^{\gamma}r^{1-\gamma}) - (1 - r^{1-\gamma})\right]}{(\gamma - 1)}$$

$$= \frac{p_{1}V_{1}r^{\gamma - 1}\left[k\rho\gamma - k\rho - k\gamma + k + k\rho - k\rho^{\gamma}r^{1-\gamma} - 1 + r^{1-\gamma}\right]}{(\gamma - 1)}$$

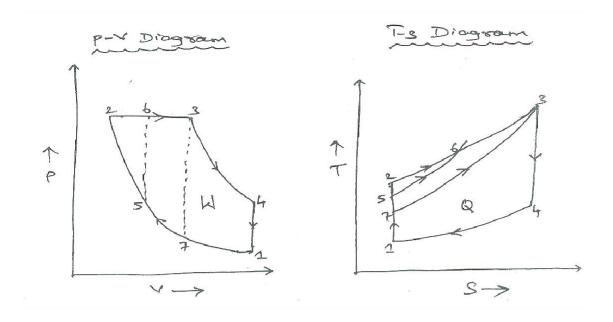
$$\left[\because p_{2}V_{2} = p_{1}V_{1}r^{\gamma - 1}\right]$$

$$W = \frac{p_{1}V_{1}r^{\gamma - 1}\left[k\gamma(\rho - 1) + (k - 1) - r^{1-\gamma}(k\rho^{\gamma} - 1)\right]}{(\gamma - 1)}$$

Mean effective pressure:

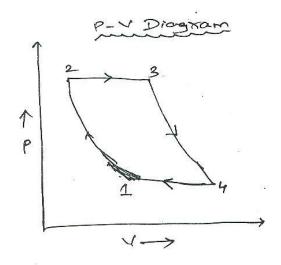

$$p_{m} = \frac{W}{V_{1} - V_{2}} = \frac{p_{1}V_{1} r^{\gamma - 1} \left[k\gamma(\rho - 1) + (k - 1) - r^{1 - \gamma} \left(k\rho^{\gamma} - 1 \right) \right]}{(\gamma - 1) V_{1} \left(1 - \frac{1}{r} \right)}$$

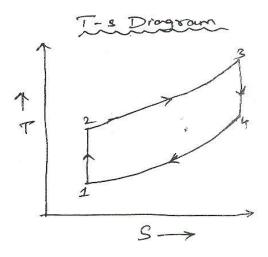
$$= \frac{p_{1} r^{\gamma - 1} \left[k\gamma(\rho - 1) + (k - 1) - r^{1 - \gamma} \left(k\rho^{\gamma} - 1 \right) \right]}{(\gamma - 1) \left(\frac{r - 1}{r} \right)}$$


$$p_{m} = \frac{p_{1}r^{\gamma} \left[k\gamma(\rho - 1) + (k - 1) - r^{1 - \gamma} \left(k\rho^{\gamma} - 1 \right) \right]}{(\gamma - 1)(r - 1)}$$

4. Comparisons of Efficiencies of Otto, Diesel and Dual

Cycle. Case 1: For same compression ratio and heat rejection.




Case 2: For the same maximum pressure and temperature.

BRAYTON CYCLE OR JOULE CYCLE:

It consists of two reversible adiabatic process and two constant pressure process.

Process 1-2:Isentropic compression process

- 1. Air is compressed in the compressor isentropically from P₁ to P₂
- 2. Pressure increases from P₁ to P₂ and temperature increases from T₁ to T₂.
- 3. Volume reduces from V_1 to V_2 .
- 4. Compressor work, $Wc = mc_p[T_2-T_1]$

Process 2-3: constant pressure heat addition process.

- 1. Compressed air is passed through the combustion chamber where fuel is injected and burned at constant pressure P_2 and temperature increases from T_2 to T_3 .
- 2. Heat addition, $Qs = mc_p [T_3-T_2]$

Process 3-4: Isentropic expansion process.

- 1. High temperature air is then expanded isentropically in the turbine to the ambient pressure.
- 2. Temperature falls from T₃ to T₄.
- 3. Turbine works, $W_T = m C_p [T_3-T_4]$

Process 4-1: Constant pressure heat rejection process,

- 1. Air is then returned to its original position after passing through cooler where it cools at constant pressure process.
- 2. Heat rejected, $Q_R = m C_p [T_4-T_1]$

Efficiency,
$$\eta = W/\ Qs$$

$$= Qs - Q_R \ / \ Qs$$

$$= m\ C_p\ [T_3-T_2] - m\ C_p\ [T_4-T_1] \ / \ m\ C_p\ [T_3-T_2]$$

$$= 1 - \ [T_4-T_1] \ / \ [T_3-T_2]$$

w.k.t,

Compression ratio,
$$r = V_1/V_2 = V_4/V_3$$

Pressure ratio,
$$R_p = P_2/P_1 = P_3/P_4$$

Process1-2,

$$T_2/T_1 = [V_2/V_1]^{Y-1}$$

$$= r_{Y-1}$$

$$T_2 = T_1 r^{Y-1}$$

Process3-4,

$$T_3/T_4 = [V_4/V_3]^{Y-1}$$

$$= r^{Y-1}$$

$$T_3 = T_4 r^{Y-1}$$

Also,

$$T_{3}/T_{4} = [P_{3}/P_{4}]^{Y-1/Y}$$

$$T_{3} = T_{4} (R_{p})^{Y-1/Y}$$

Substitute T₂ and T₃ in efficiency of brayton.

$$\eta = 1 - 1/(R_p)^{Y-1/}$$

$$Y = 1 - 1/r^{Y-1}$$

Work ratio = Net work transfer / Positive work transfer

$$= m \; C_p \; [T_3\text{-}T_4] - m \; C_p \; [T_2\text{-}T_1] \; / \; m \; C_p \; [T_3\text{-}T_4]$$

$$= 1 - [T_2 - T_1] / [T_3 - T_4]$$

$$= 1 - T_{1}(R_{p})^{Y-1/Y} - T_{1} T_{3}$$

$$- T_{3} / (R_{p})^{Y-1/Y}$$

$$= 1 - T_{1}/T_{3} \times (R_{p})^{Y-1/Y}$$

PROBLEMS:

5. A six cylinder petrol engine has a compression ratio 5%. The clearance volume of each cylinder is 110 cc. It operates on a four stroke constant volume cycle and the indicated efficiency ratio referred to air std. efficiency is 0.56 at the speed of 2400 rpm. It consumes 10 kg of fuel per hour. The calorific value of fuel is 44000 KJ/kg. Determine the average indicated mean effective pressure.

Given data:

$$r = 5$$

$$V_c = 110 cc$$

Efficiency =
$$0.56$$

$$N = 2400 \text{ rpm}$$

$$m_f = 10 \text{ kg/hr}$$

$$C_v = 44000 \text{ KJ/kg}$$

$$Z = 6$$

Solution:

Compression ratio,

$$r = \frac{V + V}{V_c}$$

$$5 = V_S + 110/110$$

$$V_s = 440 \; cc$$

Air standard efficiency,

$$\eta = 1 - \frac{1}{r_{\gamma}} - 1$$

$$= 1 - \frac{1}{(5)^{1.4 - 1}}$$

$$= 47.47$$

Relative efficiency,

$$\eta = \frac{\eta_{actual}}{\eta_{airstd}}$$

$$0.56 = \eta_{actual} / 47.47$$

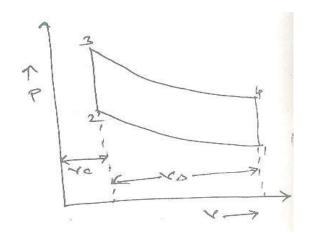
Actual efficiency =
$$\frac{Work \ done}{Heat \ input}$$

$$0.2658 = W/(10/3600)(44000)$$

$$W = 32.49 \text{ KW}$$

 $p_m = 6.15bar$

Net work output,


$$W = \frac{p_{m} V_{s} NZ}{60}$$

$$2.49 \times 10^{3} = p_{m} \times 440 \times 10^{-6} \times (1200/60) \times 6$$

6. One kg of air is taken through an (a) OTTO cycle, (b) DIESEL cycle. Initially the air is at 1 bar 290k. The compression ratio for both cycles is 12 and heat addition is 1.9 MJ in each cycle. Calculate the air standard efficiency and mean effective pressure for both the cycle.(Nov/Dec-11) (May/Jun-14) (Nov-14)

Given data:

$$P_1 = 1bar = 100KN/m^2$$

 $T_1 = 290K$
 $r = 12$
 $Q_S = 1.9 \text{ MJ} = 1.9 \times 10^3 \text{ KJ}$

Solution:

a. OTTO cycle:

Process1-2: Isentropic compression

$$\frac{P}{P_1} = \left(\frac{V}{V_1}\right)^{\gamma} = (r)$$

$$= 100 (12)^{1.4}$$

$$P_2 = 3242.3 \text{ KN/m}^2$$

$$T_{\frac{2}{T}} = \left(\left| \frac{V_1}{V_2} \right| \right) = (r)^{\gamma - 1}$$

$$T_2 = 290 (12)^{1.4 - 1}$$

$$T_2 = 783.55 \text{ K}$$

Heat supplied,

$$Q_s = m C_v [T_3-T_2]$$

 $1900= 1 \times 0.718 [T_3 - 783.55]$
 $T_3= 3429.79 K$

Process 2-3: Constant volume process

$$P T = \frac{T}{P_3} = \frac{2}{T_3}$$

$$P_3 = P_2 \times (T_3/T_2)$$

$$= 3242.3 \times (3429.79/783.55)$$

$$P_3 = 14196.7KN/m^2$$

Air standard efficiency,

$$\eta = 1 - \frac{1}{r\gamma} - 1$$

$$= 1 - \frac{1}{(12)^{1.4 - 1}}$$

$$= 62.98\%$$

Pressure ratio,

$$K$$

$$P = P_3$$

Mean effective pressure,

$$p = p r (k-1) (r^{\gamma-1}-1)$$

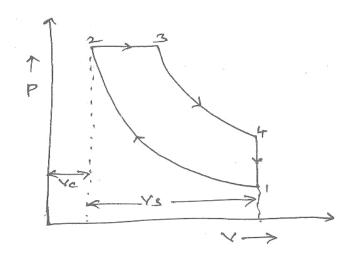
$$= 100 \times 12 [4.378 - 1/1.4] [(12)^{1.4-1} - 1/12 - 1]$$

$$= 1567.93 \text{ KN/m}^2$$

b. DIESEL cycle:

Process 1-2: Isentropic compression

$$T_{2} = (r)^{\gamma - 1}$$


$$T_{1}$$

$$T_{2} = [(12)^{1.4 - 1} \times 290]$$

$$= 783.56 \text{ K}$$

Process 2-3: Constant pressure heat addition

$$Q_s = m \; C_p \; [T_3 \text{-} T_2]$$

$$1.9 \times 10^3 = 1 \times 1.005 \times [T_3 - 783.56]$$

$$T_3 = 2674 \; \text{K}$$

Cut off ratio,
$$\rho = \frac{V_3}{\frac{V}{V}} = \frac{T_3}{\frac{T}{2}}$$

$$= 2674/783.56$$

$$\rho = 3.413$$

Air standard efficiency,
$$\eta_{Diesel} = 1 - \frac{1}{\gamma(r)^{\gamma-1}} \left(\frac{\rho^{\gamma} - 1}{\rho - 1} \right)$$

$$= 1 - 1/1.4(12)^{1.4-1} [3.413^{1.4} - 1/3.413 - 1]$$

$$= 49.68 \%$$

Mean effective pressure,

$$P = \frac{p_1 r^{\gamma} \left(\gamma \left(\rho - 1 \right) - r_1^{-\gamma} \left(\rho^{\gamma} - 1 \right) \right)}{\gamma - 1 r_1^{-\gamma} \left(\rho^{\gamma} - 1 \right)}$$

$$= 100 \times 12^{1.4} \left[1.4(3.413 - 1) - (12)^{1 - 1.4} \times (3.413^{1.4} - 1) \right] / (1.4 - 1) (12-1)$$

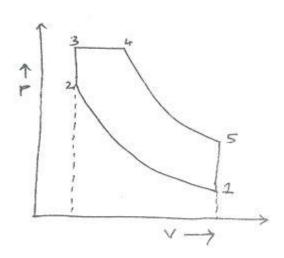
$$= 1241 \text{ KN/m}^2$$

7. An air std. DUAL cycle has a compression ratio of 16 and compression begins at 1 bar and 50° C. The maximum pressure is 70 bar. The heat transferred to air at constant pressure is equal to heat transferred at constant volume. Find the temperature at a cardinal point, cycle efficiency and mean effective pressure. Take $C_p = 1.005$ KJ/KgK and $C_v = 0.718$ KJ/KgK. (Nov/Dec-11,12,May/June-13)

Given data:

$$r = 16$$

$$P_1 = 1$$
 bar


$$T_1 = 50^{\circ}C = 323K$$

$$P_3 = 70 \text{ bar}$$

$$Q_S = Q_{S2}$$

$$C_p = 1.005 \text{ KJ/KgK}$$

$$C_v = 0.718 \; KJ/KgK$$

Solution:

Specific volume,
$$v_1 = \frac{RT_1}{p_1}$$

= $(287 \times 323)/100000$
= $0.92701 \text{ m}^3/\text{kg}$

Process1-2: Isentropic compression

$$p_2 = (r)^{\gamma} \times p_1$$

= $16^{1.4} \times 1$
= 48.5 bar
 $T_{2=(r)^{\gamma-1}}$
 $\overline{T_1}$
= $16^{1.4-1} \times 323$
= 979 K

Specific volume,
$$v_2 = \frac{RT_2}{p_2}$$

$$= (287 \times 979) / (48.5 \times 100000)$$

$$= 0.05794 \text{ m}^3/\text{kg}$$

Process2-3: constant volume heat addition process.

$$P T T = \frac{P}{2} = \frac{T}{2}$$

$$P T_{3} T_{3}$$

$$T_{3} = [70/48.5] 979$$

$$= 1413 \text{ K}$$

$$Q_{s1} = m C_v [T_3-T_2]$$

= 1(0.718) [1413-979]
= 311.612 KJ/Kg

Process 3-4: constant pressure heat addition process.

$$Q_{s2} = m C_p [T_4-T_3]$$

$$311.12 = 1.005 [T_4 - 1413]$$

$$T_4 = 1723 K$$

W.K.T,

$$\frac{V}{\frac{4}{\sqrt{3}}} = \frac{T}{\sqrt{3}}$$

$$\frac{V}{V_3} = \frac{T}{T_3}$$

$$V_4 = [1723/1413] \ 0.05794$$

= 0.070652 m³/kg

Expansion ratio,

$$r = \frac{V_4}{V_1}$$
= 0.070652/0.92701
$$= 0.096215$$

Process 4-5: Isentropic expansion process

$$p_5 = (r_e)^{\gamma} p_4$$

= $[0.076215]^{1.4} [70]$
= 1.9063 bar

$$T_5 = (r_e)^{\gamma - 1} T_4$$

= $[0.076215]^{1.4-1} [1723]$
= 567 K

Cut off ratio,

$$\rho = \frac{V}{V_3}$$
= 0.070652/0.05744
=1.2194

pressure ratio,

$$k = \frac{p_3}{p_2}$$
=70/48.5
=1.4433

Cycle efficiency

$$\eta_{Duel} = 1 - \frac{1}{r} \left[\frac{k \rho^{\gamma} - 1}{(k-1) + \gamma k (\rho - 1)} \right]$$

$$= 1 - \frac{1}{16 \cdot 1.4433(1.2194)^{1.4} - 1} \left[\frac{1.4433(1.2194)^{1.4} - 1}{(1.4433 - 1) + (1.4 \times 1.4433)(1.2194 - 1)} \right]$$

$$= 66.34 \%$$

Net heat supplied to the cycle,

$$Q_s = Q_{s1} + Q_{s2}$$

= 311.612 + 311.612
= 623.224 KJ/Kg

Net work done of the cycle,

$$\begin{split} W &= Q_S \times \eta \\ &= 623.224 \times 0.6634 \\ &= 413.45 \text{ KJ/Kg} \end{split}$$

The mean effective pressure,

$$p = \frac{W}{V_1 - V_2}$$
= 413.45/(0.92701-0.05794)
= 4.75 bar

8. Air enters a Brayton cycle at 100kpa, 300k. The compression ratio is 8:1. The maximum temperature in the cycle is 1300k. Find 1.Air standard efficiency, 2.compresssor and turbine work and 3. Work ratio. (Nov-14)

Given data:

$$P_1 = 100 \text{ kpa}$$

$$T_1 = 300K$$

$$r = 8$$

$$T_3 = 1300 \text{ K}$$

Solution:

Process 1-2:

$$\frac{T_{\frac{2}{2}} = \left(\frac{V_{1}}{V_{2}}\right)}{T_{1} \left(\frac{V_{2}}{V_{2}}\right)}$$

$$T_2 = (8)^{1.4-1} \times 300$$

= 689.2 K

Process 3-4:

$$T_{4} = \begin{pmatrix} V_{4} \\ V_{3} \end{pmatrix}$$

$$T_{4} = 1300/(8)^{1.4-1}$$

$$= 565.85 \text{ K}$$

Compressor work, $W_C = C_P [T_2-T_1]$ = 1.005[689.2-300] = 391.145 KJ/Kg

Turbine work,
$$W_T = C_P [T_3-T_4]$$

= 1.005[1300-565.85]
= 734.82 KJ/Kg

Air standard efficiency,

$$\eta = 1 - \frac{1}{(r)^{\frac{1}{1}}}$$

$$= 1 - 1/(8)^{1.4 - 1}$$

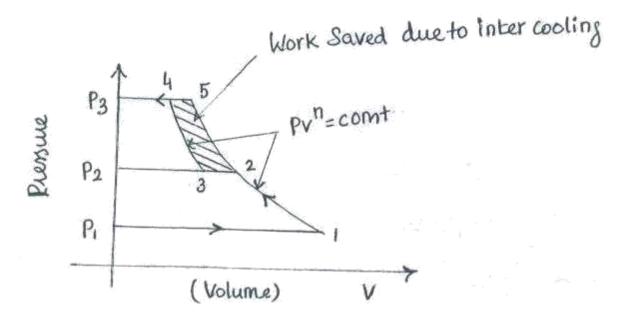
$$= 56.47\%$$

UNIT II

RECIPROCATING AIR COMPRESSOR

- 1. Give the classification of compressor based on movement of piston. (Nov 2013)
- Reciprocating compressor •

Rotary compressor


2. What is isothermal efficiency with reference to reciprocating air compressor? (May 2013)

It is defined as the ratio between isothermal work to the actual work of compressor.

3. State the principal of working of screw compressor. (May 2013)

Screw compressors use two meshing helical screws, known as rotors, to compress the gas. Air enters at the suction side and moves through the threads as the screws rotate. The meshing rotors force the gas through the compressor, and the gas exits at the end of the screws.

4. Draw the P-V diagram of a two stage reciprocating air compressor. (May 2014)

5. Define isentropic efficiency of reciprocating compressor. (Nov 2014)

It is the ratio of isentropic power to the brake power required to drive the compressor.

6. What is the effect of clearance volume on work of compression? (Nov 2017)

If clearance volume is considered, actual volume of suction has decreased from the stroke volume. Thus the effect of clearance is to reduce the volume of air actually sucked in per working cycle.

7. List out the factors limit the delivery pressure in a reciprocating compressor (Nov 2015)

- The size of the cylinder will be too large for very high pressure
- Due to compression, there will be rise in the temperature of the air. So the delivery pressure is limited, so that rise in temperature of air is not going beyond limit and size of cylinder is not too large.

8. Define volumetric efficiency of an air compressor. (May 2016) (May 2015)

Volumetric efficiency is defined as the ratio of volume of free air sucked into the compressor per cycle to the stroke volume of the cylinder.

9. State the conditions which lower the volumetric efficiency of an air compressor. (May 2016)

- Very high speed
- Leakage past the piston
- Too large a clearance volume
- Obstruction at inlet valve

10. Write the difference between centrifugal and axial compressors. (Nov 2016)

S.No	Centrifugal compressor	Axial compressor
1	Starting torque is low.	Starting torque is high
2	It is not suitable for multistage	Itissuitableformultistage
	compression	compression
3	Running cost is low	Running cost is high

11. Define the term Free air delivery (May 2015)(Apr 2017)

Free air delivery: The free air delivered is the actual volume delivered at this state pressure reduced to intake pressure and temperature and expressed in terms of m³/min.

12. What are the advantages of multistage compression? (May 2015) (Nov 2016)

- It improves the efficiency for the given pressure ratio.
- It reduces the leakage loss considerably.
- It gives the more uniform torque and hence, a smaller size of fly wheel is required.

13. What is meant by intercooler? (May 2014)

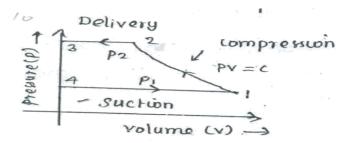
The cooler which is placed in between stages is called Intercooler. An intercooler is a simple heat exchanger.

14. What is meant by perfect inter cooling (Nov 2015)

When the temperature of air leaving the inter cooler is equal to the original atmospheric air temperature then the inter cooling known as perfect inter cooling.

15. What is the effect of inter cooling in multi compressor? (Nov 2014)(Nov 2017)

An inter cooler is a simple heat exchanger. It exchanges the heat of compressor air from the low pressure compressor to the circulating water before the air enters to the high pressure compressor. The purpose of inter cooling is to minimize the work compression.


16. List the effects of intercooling in a multi stage compression process. (Nov 2013)

PART-B

16 Marks:

- 1. Work done by a single stage reciprocating air compressor without clearance volume. (May-12)
 - a) Work done during isothermal compression (pv=c)

The p-v diagram for a single stage acting reciprocating air compressor is shown in figure. The sequence of operation as represented on the diagram is as follows.

Process 4-1: Represents the suction of air at pressure p₁

Process 1-2: Air is compressed isothermally from pressure p_1 to pressure p_2 .

Pressure 2-3: Represents the discharge of air at pressure

$$p_{2} \text{ Work done} = \text{Area } 1\text{-}2\text{-}3\text{-}4\text{-}1$$

$$W = W_{\text{Comp}} + W_{\text{Delivery}} - W_{\text{Suction}}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} - p_{1}v_{1}$$
For isothermal process, $W_{\text{Comp}} = p_{1}v_{1} \ln \left[v_{1} / v_{2}\right]$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

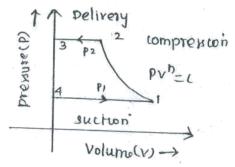
$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] + p_{2}v_{2} + p_{2}v_{2}$$

$$= p_{1}v_{1} \ln \left[v_{1} / v_{2}\right] +$$


b) Work done during polytrophic compression ($pv^n = c$)

The p-v diagram for a single stage single acting reciprocating air compressor is shown in figure. The sequence of operation as represented on the diagram is as follows.

Process 4-1: Suction of air at pressure p_1 .

Process 1-2: Compression of air polytrophically from pressure p_1 to p_2 .

Process 2-3: The discharge or delivery of air at pressure p2

Work done = Area 1-2-3-4-1
$$W = W_{Comp} + W_{Delivery} - W_{Suction}$$

$$= p_2 v_2 - p_1 v_1 / n-1 + p_2 v_2 - p_1 v_1$$

$$= p_2 v_2 - p_1 v_1 + (n-1) (p_2 v_2) - (n-1)$$

$$(p_1 v_1) n - 1$$

$$= p_2 v_2 - p_1 v_1 + n p_2 v_2 - p_2 v_2 - np_1 v_1$$

$$+ p_1 v_1 n - 1$$

$$= np_2 v_2 - np_1 v_1$$

$$- n - 1$$

$$W = n / n-1 [p_2 v_2 - p_1 v_1]$$

$$(p_1 v_1 = mRT_1; p_2 v_2 = mRT_2)$$

$$W = n / n-1 [mRT_1 - mRT_2]$$

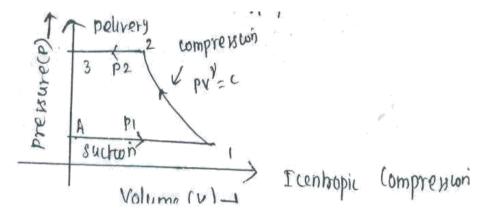
$$= n / n-1 mRT_1 [T_2/T_1 - 1]$$

For polytrophic process,

$$T_2/T_1 = [p_2 / p_1]^{n-1/n}$$

$$W = n / n-1 \text{ mRT}_1 [p_2 / p_1]^{n-1/n}$$

$$= n / n-1 p_1 v_1 [(p_2 / p_1)^{n-1/n} - 1]$$


C) Work done during isentropic compression (pv $^{\gamma}$ = c)

The p-v diagram for a single stage single acting reciprocating air compressor is shown in figure.

Process4-1: Suction of air at pressure p₁

Process1-2: Isentropic compression of air from pressure p1 to p2

Process2-3: Discharge of air pressure p2

Work done = Area 1-2-3-4-1
$$= p_2v_2 - p_1v_1 / \gamma - 1 + p_2v_2 - p_1v_1$$

$$= p_2v_2 - p_1v_1 + (\gamma - 1) (p_2v_2) - (\gamma - 1) (p_1v_1)$$

$$\frac{\gamma - 1}{\gamma - 1}$$

$$= p_2v_2 - p_1v_1 + \gamma p_2v_2 - p_2v_2 - \gamma p_1v_1 + p_1v_1$$

$$\frac{\gamma - 1}{\gamma - 1}$$

$$= \gamma p_2v_2 - \gamma p_1v_1$$

$$\frac{\gamma - 1}{\gamma - 1}$$

$$W = n \gamma / \gamma - 1 [p_2v_2 - p_1v_1]$$

$$(p_1v_1 = mRT_1; p_2v_2 = mRT_2)$$

$$W = \gamma / \gamma - 1 [mRT_1 - mRT_2]$$

$$= \gamma / \gamma - 1 mRT_1 [T_2/T_1 - 1]$$

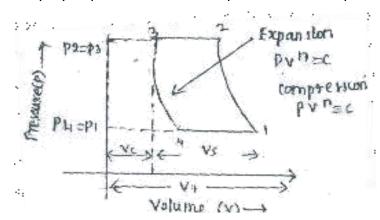
For polytrophic process,

$$T_2/T_1 = [p_2 / p_1]^{\gamma - 1/\gamma}$$

$$W = \gamma / \gamma - 1 \text{ mRT}_1 [p_2 / p_1]^{\gamma - 1/\gamma} = \gamma / \gamma - 1 \text{ piv}_1 [(p_2 / p_1)^{\gamma - 1/\gamma} - 1]$$

2. <u>Work done by single stage reciprocating air compressor with clearance volume.</u>

Consider a reciprocating air compressor with clearance volume as shown in figure.


 $p_1 v_1 T_1$ = initial pressure, volume and temperature of air respectively

 $p_2 v_2 T_2$ = final pressure, volume and temperature of air respectively

 v_c = clearance volume

 v_s = stroke volume = $v_1 - v_c$

n = polytrophic index for compression and expansion.

Work done by the compressor per cycle,

W = Work done during compression – Work done during expansion =

$$n / n-1 p_1v_1 [(p_2 / p_1)^{n-1/n} - 1] - n / n-1 p_4v_4 [(p_3 / p_4)^{n-1/n} - 1]$$

W.k.t

$$p_1 = p_4; p_2 = p_3$$

$$W = n \ / \ n\text{-}1 \ p_1 v_1 \ [(p_2 \ / \ p_1)^{n\text{-}1/n} \ - \ 1] \ - \ n \ / \ n\text{-}1 \ p_1 v_4 \ [(p_2 \ / \ p_1)^{n\text{-}1/n} \ - \ 1]$$

=
$$n / n-1 p_1 [(p_2 / p_1)^{n-1/n} - 1] [v_1 - v_4]$$

$$= n / n-1 p_1 v_a [(p_2 / p_1)^{n-1/n} - 1]$$

Where;

 $v_a = v_1 - v_4$ is the actual volume of free air delivered per cycle.

$$W = n / n-1 mRT_1 [(p_2 / p_1)^{n-1/n} - 1]$$

3. Derive an expression for Volumetric efficiency of an air compressor.

(May-14)

Volumetric efficiency:

Volumetric efficiency is defined as the ratio of volume of free air sucked into the compressor per cycle to the stroke volume of the cylinder.

$$\eta_{VOI}$$
 = Volume of free air taken per cycle

Stroke volume of the cylinder

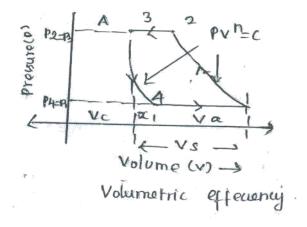
$$\eta_{VOI} = v_a / v_s$$

From the p-v diagram,

$$v_a = v_s - x$$

$$x = v_4 - v_C$$

$$\eta_{VOI} = v_S - x / v_S = v_S - (v_4 - v_C) / v_S$$


$$= 1 - v_C / v_S [v_4 / v_C - 1]....(3)$$

Compression and expansion follows, $pv^n = c$

$$p_3 v_3^n = p_4 v_4^n$$

$$v_4 / v_3 = (p_3 / p_4)^{1/n}$$

From the p-v diagram, w.k.t,

$$v_3 = v_c$$
; $p_4 = p_1$; $p_2 = p_3$
 $v_4 / v_c = (p_3 / p_4)^{1/n}$

$$v_4 / v_c = (p_2 / p_1)^{1/n}$$

Applying v_4 / v_C value in equation (3)

$$\eta_{\text{vol}} = 1 - v_{\text{c}} / v_{\text{s}} [(p_2 / p_1)^{1/n} - 1]$$

Clearance ratio is defined as the ratio of clearance volume to swept volume Clearance ratio, $c = v_c / v_s$

$$= 1 - c [(p_2 / p_1)^{1/n} - 1]$$

- 1. A single cylinder, single stage air compressor has cylinder diameter 160mm and stroke length 300mm. It draws the air into its cylinder at a pressure of 100kpa at 27°C. The air then compressed to a pressure of 650kpa. If the compressor runs at a speed of 2rev/s, determine
 - a) Mass of air compressed per cycle
 - b) Work required per cycle
 - c) <u>Power required to derive the compressor in kW</u>

 <u>Assume the compression process follows pv = constant.</u> (May-12)

 Given data:

D = 160mm = 0.16m
L = 300mm = 0.3m

$$p_1$$
 = 100kpa
 T_1 =27+273=300K
 P_2 = 650kpa
N = 2 rev/s
 pv^Y = c; Y=1.4

Solution:

Work done during isothermal compression

W = mRT₁ ln
$$(p_2 / p_1)$$

W = p_1v_1 ln (p_2 / p_1)

w.k.t,

$$v_1 = \pi/4 D^2 L$$

= $\pi/4 (0.16)^2 (0.3)$
= $6.03 \times 10^{-3} m^3$

Substituting v_1 in work done equation

$$W = p_1v_1 \ln (p_2 / p_1)$$

$$= 100 \times 6.03 \times 10^{-3} \times \ln (650 / 100)$$

$$= 1.13 \text{ kJ}$$
Power, P = W × N / 60
$$= (1.13 \times 120) / 60$$

$$= 2.26 \text{ kW}$$

w.k.t,

$$p_1v_1 = mRT_1$$

 $m = (100 \times 6.03 \times 10^{-3}) / (0.287 \times 300)$
 $= 0.007kq$

2. A single cylinder, single acting reciprocating air compressor with a bar of 12cm, and stroke of 16cm runs at 410rpm. At the beginning of compression, the pressure and temperature in the cylinder are 0.98bar and 40°C. The delivery pressure is 6bar. The index of compression is 1.32. The clearance is 6% of stroke volume. Determine the volume of air delivered referred to 1bar and 20°C. What is the compressor power required? (May-13)

Given data:

D =
$$12cm = 0.12m$$

L = $16cm = 0.16m$
N = $410rpm$
 $p_1 = 0.98bar = 98kpa$
 $T_1 = 40 + 273 = 313K$
 $p_2 = 6bar = 600kpa$
 $n = 1.32$
 $v_c = 6%v_s = 0.06v_s p_0$
= $1bar = 100kpa T_0 = 20 + 273 = 293K$

Solution:

w.k.t,
$$v_S = \pi/4 \ D^2 L$$

$$= \pi/4 \ (0.12)^2 (0.16)$$

$$= 0.0018 \ m^3$$
 w.k.t,
$$v_1 = v_C + v_S = 0.06 \ v_S + v_S$$

$$= 1.06 \ v_S = 1.06 \times 0.0018$$

$$= 1.908 \times 10^{-3} \ m^3$$

Work done on the single stage compressor with clearance volume.

=
$$0.00048 - 0.06 \times 0.0018$$

= 0.000372 m^3
Substituting T₀, p₀, p₂, T₂, and v_d in (1)
v₀ = $(293/100) \times (600/485.6) \times 0.000372$
= 0.0013 m^3

3. A 2kg/s of air enters the LP cylinder of two stage compressor. The overall pressure ratio is 9:1. The air at inlet to the compressor is 100kpa and 35°C. The index of compression in each cylinder is 1.3. Find the inter cooler pressure for perfect inter cooling. Also find the minimum power required and % power saved over single stage compression. (Dec-11)

Given data:

$$m = 2kg/s$$

 $p_3 / p_1 = 9$
 $p_1 = 100kpa$
 $p_3 = 900kpa$
 $T_1 = 35^0C + 273 = 308k$
 $n = 1.3$

Solution:

w.k.t,

Inter cooler pressure

$$p_2 = \sqrt{p_3 p_1}$$

= $\sqrt{(100 \times 900)}$
= 300kpa

Work done for x no. of stage

1] Power, $P_1 = 442.13 \text{ kW}$

Work done for single stage

Power,p2 = 505.9 kW
Saving in power = 505.9 - 442.13
= 63.77 kW
% of saving in power =
$$p_2$$
- p_1/p_2
= 63.77/505.9
= 12.6%

4. A single stage single acting compressor delivers 15m³ of free air per minute from 1bar to 8bar. The speed of compressor is 300rpm assuming that compression and expansion follow the law PV¹.³=C and clearance is (1/16) the of swept volume find the diameter and stroke of the compressor. Take L/D=1.5.The temperature and pressure of air at the suction are same as atmospheric air. (Dec-12)

Given data:

$$V_0=15m^3/min$$
 $P_1=1bar=100kP_a$
 $P_2=8bar=800kP_a$
 $N=300rpm$
 $PV^{1.3}=C$
 $N=1.3$
 $V_C/V_S=1/6$
 $L/D=1.5$

Solution:

$$\eta_{Vol} = 1 - (v_c/v_s)[(p_2/p_1)^{1/n} - 1]$$

$$= 1 - 1/16[(8/1)^{1/1.3} - 1] = 0.753$$

$$\eta_{Vol} = 75.3 \%$$
w.k.t,
$$V_a = V_s \times \eta_{Vol} \times 300$$

$$15 = V_s \times 0.753 \times 300$$

$$V_s = 0.0664 \text{ m}^3$$

$$v_s = (\pi/4)D^2 \times L$$

$$= 0.0664$$

$$(\pi/4)D^2 \times 1.5D = 0.0664$$

 $D=0.3834 \text{ m}$
 $L/D=1.5$
 $L=1.5 \times D$
 $=1.5 \times 0.3834$
 $=0.5751 \text{ m}$

5. A three stage air compressor delivers 5.2m³ of free air /minute. The suction pressure and temperature are 1bar and 30°C. The pressure and temperature are 1.03bar and 20°C at free air condition. The air is cooled at 30°C after each stage of compression. The delivery pressure of the compressor is 150bar. The R.P.M of the compressor is 300. The clearances of L.P, I.P, and H.P cylinders are 5% of the respective strokes. The index of compression and re-expansion in all stages is 1.35. Neglecting pressure losses, find the B.P of the motor required to run the compressor if the mechanical efficiency is 80%. (May-11)

Given data:

 $V_0 = V_a = 5.2 \text{ m}^{3/\text{min P}_1 = 1}$

```
bar=100 kpa P_0=1.03
    bar=103 kpa
   T_0 = 20^0 C = 20 + 273 = 293 K
   T_1=T_2=T_3=T_4=30^{\circ}C=303
   K P<sub>4</sub>=150 bar=15000 kpa
   N = 300 \text{ rpm}
   C = 5\% = 0.08,
   n_{mech} = 80\% = 0.08
Solution: Inter cooler pressure,
                            p_2/p_1 = (p_4/p_1)^{1/3}
                                    = (150/1)^{1/3}
                            p_2/p_1 = 5.31
                            p_2/p_1 = p_3/p_2 = p_4/p_3 = 5.31
         w.k.t,
                  v_a = 5.2 \text{ m}^3/\text{min} = 5.2/60 = 0.0867 \text{ m}^3/\text{sec}
          Then,
```

$$p_0v_0 \ / \ T_0 = p_1v_{a1} \ / \ T_1$$

$$103 \times 0.0867 \ / \ 293 = 100 \times v_{a1} \ / \ 303$$

$$v_{a1} = 0.0923 \ m^3/sec$$
 Similarly,
$$p_0v_0 \ / \ T_0 = p_2v_{a2} \ / \ T_2$$

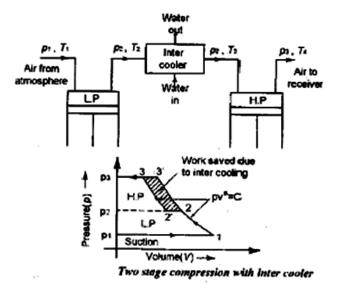
$$103 \times 0.0867 \ / \ 293 = 531 \times v_{a2} \ / \ 303$$

$$v_{a2} = 0.0174 \ m^3/sec$$
 Similarly,
$$p_0v_0 \ / \ T_0 = p_3v_{a3} \ / \ T_3$$

$$103 \times 0.0867 \ / \ 293 = 2819.61 \times v_{a3} \ / \ 303 \ v_{a3} = 0.00328 \ m^3/sec$$

Work done on the compressor,

$$W = n / n-1 \ p_1 va_1 \ [(p_2 / p_1)^{n-1/n} - 1] + n / n-1 \ p_2 va_2 \ [(p_3 / p_2)^{n-1/n} - 1] + n / n-1 \ p_3 va_3 \ [(p_4 / p_3)^{n-1/n} - 1]$$


$$W = 1.35/1.35-1 \times 103 \times 0.0923 [(5.31)^{1.35-1/1.35} - 1] + 1.35/1.35-1 \times 531 \times 0.0174 [(5.31)^{1.35-1/1.35} - 1] + 1.35/1.35-1 \times 2819.61 \times 0.00328 [(5.31)^{1.35-1/1.35} - 1]$$

$$IP = 57.91 \text{ kW}$$

$$\eta_{\text{mech}} = \text{BP/IP}$$

$$\text{BP} = \eta_{\text{mech}} \times \text{IP} = 0.8 \times 57.91$$

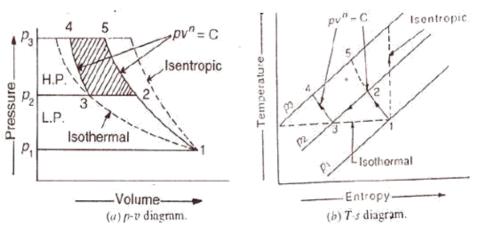
Brake power of motor, BP = 46.33 Kw

6. Explain the construction and working principle of Multi stage compressor and discuss the perfect and in-perfect inter-cooling with neat sketch. (Dec-13) (May-14)

Assumptions Made In Multistage Compression

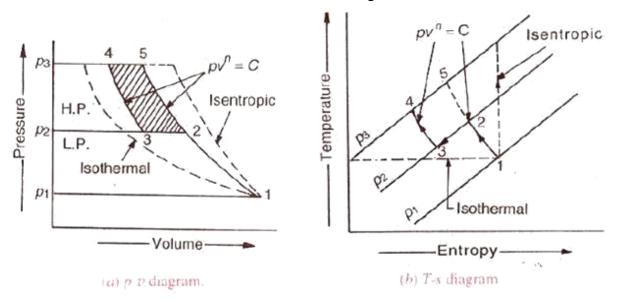
- 1. Suction and delivery pressures remain constant during each stage.
- 2. The index of compression is same in each stage
- 3. The inter cooling in each stage is at constant temperature. 4. The mass of air handled by the low pressure and high-pressure cylinders are same.

Advantages of Multistage Air Compressor


- 1. Work done per kg of air is reduced in multistage compression with intercooler as compared to single stage compression for the same delivery pressure.
 - 2. Better mechanical balance can be achieved with multistage compressors.
 - 3. It reduces the leakage loss considerably.
 - 4. Volumetric efficiency is improved by increasing number of stag
 - 5. It gives more uniform torque, and hence a smaller size flywheel required.
 - 6. Lower operating temperature permits the use of cheaper in for construction.
 - 7. Better lubrication due to the lesser working temperature.

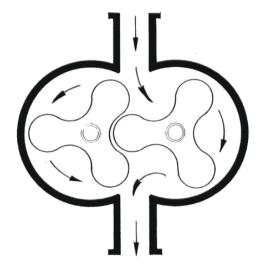
Intercooling of air in a two-stage reciprocating air compressor:

Efficiency of the intercooler plays an important role in the working of a twostage reciprocating air compress. Following two types of intercooling are important from the subject point of view:

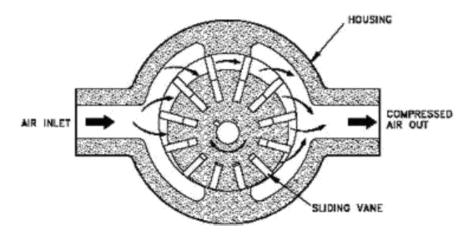

1. Complete or perfect intercooling:

When the temperature of the air leaving the intercooler (i.e. T_3) is equal to the original atmospheric air temperature (i.e. T_1) then the intercooling is known as complete or perfect intercooling. In this case, the point 3 lies on the isothermal curve as shown in below figures:

2. Incomplete or imperfect intercooling:


When the temperature of the air leaves the intercooler (i.e. T_3) is more than the original atmospheric air temperature (i.e. T_1), then the intercooling is known as incomplete or imperfect intercooling. In this case, the point 3 lies on the right side of the isothermal curve as shown in below figure:

7. Explain the different types Rotary compressors with neat sketch.


Roots Blower Compressor:

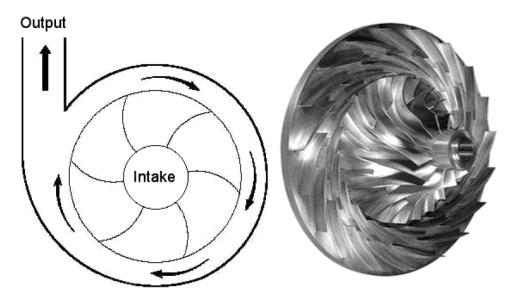
This type is generally called as blower. The discharge air pressure obtained from this type of machine is very low. The Discharge Pressure of 1 bar can be obtained in Single Stage and pressure of 2.2 bar is obtained from Stage. The discharge pressure achieved by two rotors which have separate parallel axis and rotate in opposite directions. This is the example of Positive Displacement Compressor in Rotary Type Air Compressor.

Vane Type compressor:

The rotary slide vane-type, as illustrated in Figure, has longitudinal vanes, sliding radially in a slotted rotor mounted eccentrically in a cylinder. The centrifugal force carries the sliding vanes against the cylindrical case with the vanes forming a number of individual longitudinal cells in the eccentric annulus between the case and rotor. The suction port is located where the longitudinal cells are largest. The size of each cell is reduced by the eccentricity of the rotor as the vanes approach the discharge port, thus compressing the air.

This type of compressor, looks and functions like a vane type hydraulic pump. An eccentrically mounted rotor turns in a cylindrical housing having an inlet and outlet. Vanes slide back and forth in grooves in the rotor. Air pressure or spring force keeps the tip of these vanes in contact with the housing. Air is trapped in the compartments formed by the vanes and housing and is compressed as the rotor turns.

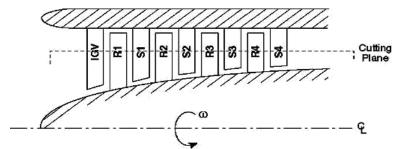
Centrifugal Compressor:


The centrifugal air compressor is a **dynamic** compressor which depends on transfer of energy from a **rotating impeller** to the air. Centrifugal compressors produce high-pressure discharge by converting angular momentum imparted by the rotating impeller (dynamic displacement).

In order to do this efficiently, centrifugal compressors rotate at higher speeds than the other types of compressors. These types of compressors are also designed for higher capacity because flow through the compressor is continuous. Adjusting the inlet guide vanes is the most common method to control capacity of a centrifugal compressor.

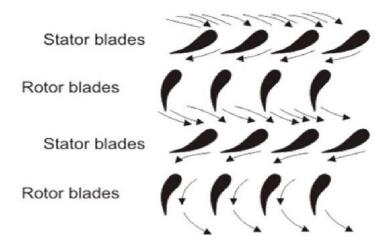
By closing the guide vanes, volumetric flows and capacity are reduced. The centrifugal air compressor is an oil free compressor by design. The oil lubricated running gear is separated from the air by shaft seals and atmospheric vents.

The centrifugal air compressor is a dynamic compressor which depends on a rotating impeller to compress the air. In order to do this efficiently, centrifugal compressors must rotate at higher speeds than


the other types of compressors. These types of compressors are designed for higher capacity because flow through the compressor is continuous and oil free by design.

Impeller

Axial flow compressor: (May-14)


Axial compressors are rotating, aerofoil based compressors in which the working fluid principally flows parallel to the axis of rotation. This is in contrast with centrifugal, axi-Centrifugal and mixed –flow compressors where the air may enter axially but will have a significant radial component on exit.

Axial Flow Compressors - Basic Operation

- Axial flow compressor is capable of higher pressure ratio on a single shaft.
- The energy transfer in a single stage is very limited (stage pressure ratio of about 1.2)

Flow through stages in Axial Flow Compressor

- But ease of combining axial flow stages leads to pressure ratios of upto 6/1 or even higher
- Thus axial flow compressor is considered as consisting of many stages
- Single stage is considered as a fan
- For most aircraft & industrial gas turbine, axial flow compressor is used in preference to radial flow type

UNIT III INTERNAL COMBUSTION ENGINES AND COMBUSTION

1. What are the advantages of four stroke cycle engine over two stroke cycle? (May 2015)

Advantages:

- 1. Higher volumetric efficiency
- 2. Thermal efficiency is higher
- 3. Emission is less.

2. What do you meant by short circuiting in two stroke engine? (Nov 2013)

In two stroke engines, all the burnt gases are not exhausted. Some portion of it will remain in the cylinder. When the piston moves to BDC, the some amount of fresh air fuel mixture from crankcase enters in to the cylinder to sweep out the burnt gases. The process of sweeping out the exhaust gases with the help of fresh air fuel mixture is known as short circuiting.

3. Name the four stages of combustion in a CI engine. (May 2013)

- Ignition delay period
- Period of rapid combustion
- Period of controlled combustion •

Period of after burning

4. What is the effect of supercharging on the power output of the IC engine? (May 2013)

Supercharging increases the power output of the engine due to the increased induction of air. This makes more oxygen available for combustion.

5. What is a carburettor? State any two functions of carburettor. (May 2014)

Carburetor is a device used to mix of petrol and air in correct proportions.

Functions of carburetor

□It maintains a small reserve of petrol in the float chamber at a constant he	ad
∟It atomizes and vaporizes the fuel	
⊔It supplies a fine spray of petrol	
∟It produces a homogeneous mixture	

6. What are the advantages of MPFI system?(Apr 2017)

- 1) More uniform A/F mixture will be supplied to each cylinder, hence the difference in power developed in each cylinder is minimum.
- (2) No need to crank the engine twice or thrice in case of cold starting as happens in the carburetor system.
- (3) Immediate response, in case of sudden acceleration / deceleration.
- (4) Since the engine is controlled by ECM* (Engine Control Module), more accurate amount of A/F mixture will be supplied.

7. What is a unit injection system? (Nov 2013)

In this system, each cylinder of the engine is provided with an individual injector, high pressure pump and a metering device.

8. What is octane number in I.C engine? (Apr 2017)

It indicates the ignition quality of gasoline. Higher this number, the less susceptible is the gas to 'knocking' when burnt in a standard spark-ignition engine. Octane number denotes the percentage (by volume) of iso-octane in a combustible mixture (containing iso-octane and normal-heptane) whose 'anti-knocking' characteristics match those of the gas being tested.

9. What is meant by valve overlapping period? (Nov 2014)

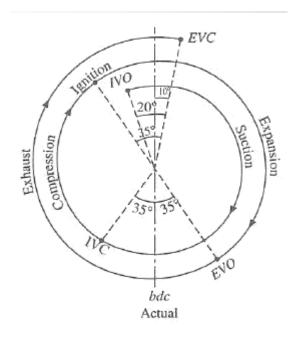
Valve overlap is the period during the valve timing where both the intake and exhaust valves are open. Occurring towards the end of the exhaust stroke, the intake valves are opened just before all the exhaust gases are released, providing more time for the intake air to enter the engine.

10. What do you understand by ignition delay? (Nov 2014)

It is a time period between the starting of injection and combustion, during this period, the fuel is atomized, vapourized and mixed with air which is raised to itself ignition temperature.

11. What are the functions of a flywheel? (May 2015) (Nov 2017)

The function of flywheel is to store energy received during the power stroke and to return the energy during the other stroke when the power is not produced.


12. Write the important requirements of fuel injection system (Nov 2015)

- The beginning as well as the end of injection should takes place sharply.
- The injection of fuel should occur at the correct movement, correct rate and correct quantity as required by the varying engine load.
- The fuel should be injected in a finely atomized condition and should be uniformly distributed inside the combustion chamber.

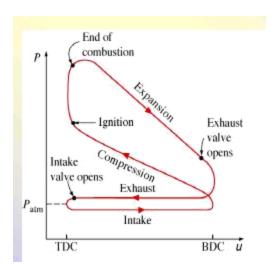
13. State the purpose of thermostat in an engine cooling system (Nov 2015)

A thermostat is used in the water cooling system to regulate the circulation of water in system to maintain the normal working temperature of the engine parts during the different operating conditions.

14. Show the valve overlapping period of a typical four stroke petrol engine on valve timing period. (May 2016)

15. Define knocking in S.I engine. (May 2016)

If the temperature of the unburnt mixture exceeds the self ignition temperature of the fuel and remains at or above this temperature during the period of preflame reactions, spontaneous ignition occurs at various pin point locations. This phenomenon is called knocking.


16. What is the antifreeze solutions used in water cooling systems. (Nov 2016)

Water and ethylene glycol Water and propylene glycol

17. What is meant by motoring test. (Nov 2016)

Motoring test determine the friction power at conditions very near to the actual operating temperatures at the test speed and load.

18. Draw the actual pv diagram of a four-stroke diesel engine and indicate all the processes. (Nov 2017)

19. Define the term brake power. (May 2014)

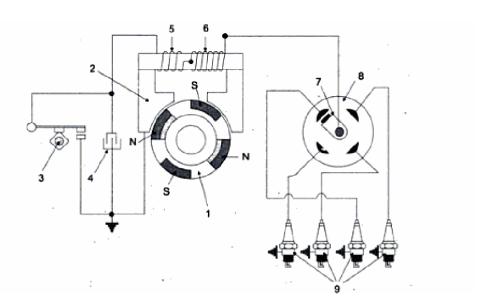
The power developed at the output shaft (crank shaft) is called the brake power.

B.P=2πNT N=speed in rpm T=Torque in KN.m

20. What are the major losses in an I.C engine?

- Heat loss due to cooling water.
- Heat loss due to exhaust gases
- Heat loss due to radiation
- Heat loss due to friction

16 marks:


1) Explain with suitable sketch the magneto-ignition system used in petrol engine and state its advantages and disadvantages over battery ignition-system system. (May-06, Dec-11)

The magneto-ignition system generates the ignition current on its own and does not depend on any battery or generator for its supply. This system is used on motor cycles and also used in few vehicles such as tractors and fire engines.

The magneto is of 3 types

- 1) Rotating magnet type
- 2) Rotating armature type
- 3) Polar inductor type magneto

In the rotating magneto type, the magneto revolves and the primary and secondary windings are kept stationary. In the rotating armature type, the armature with the primary and the secondary windings rotates between poles of stationary magnet. In the polar inductor type magneto, the magnet and windings are kept stationary, but the flux field is reversed with the help of the soft iron polar projections called inductors.

Rotating magnet; 2. Armature pole piece; 3. Cam;
 Condenser; 5. Primary coil; 6. Secondary coil; 7. Rotor arm; 8. Distributor; 9. Spark plugs

Fig: 1 Principle of the Rotating Magnet-Type Magneto for 4 Cylinder Engine:

In the fig, the magnet is rotating while the armature pole pieces are stationary. The distributor, rotor arm and four plugs are shown in fig. The primary and secondary coils as well as the condenser are fixed. The contact does not rotate, while the cam rotates.

When the wheel rotates, the magnet also rotates and current is generated. This current first blows through the primary coil. The rotating cam breaks the contact points and due to this sudden discontinuity in the flow of current, high tension current is induced in the secondary coil. The high tension current flows to the distributor. As the distributor arm rotates, the high tension current is distributed by this arm to the spark plugs. Spark is produced in the plugs following the firing order of the engine; the condenser prevents the development of any arcing between the contact breaking points during separation.

A comparison between the battery ignition system and the magneto ignition system is given below

BATTERY IGNITION SYSTEM:

- Batter supplies current to the primary circuit.
- Even, at low speed a good spark is available.
- It the battery is discharged it is difficult to start the engine.
- Starting the engine is easy.
- This system occupies more space.
- Efficiency of the system decreases as the engine speed rises.
- As there is a battery maintenance problems are considerable.
- Used in cars buses and trucks.

MAGNETO IGNITION SYSTEM:

- Magneto generates the current.
- Poor sparking at low speed.
- As, there is no battery such difficulty does not arise.
- Starting of the engine is not so easy.
- This system requires low space.
- Efficiency of the system improves as the engine speed rises.
- As there is no battery, maintenance problem are less.
- Used in, motor cycles, scooters and racing cars.

2. Classify the internal combustion engine.

IC engines are classified are based on:

Number of strokes per cycle

- Four stroke engine
- Two stroke engine

Cycle operations

- Otto cycle engine
- Diesel cycle engine
- Dual combustion cycle engine

Types of fuel used

- Petrol engine
- Diesel engine
- Gas engine

Methods of charging

- Naturally aspirated engine
- Supercharged engine

Types of ignition

- Spark –ignition engine
- Compression ignition engine

Types of cooling

- Air cooling
- Water cooling

Speed

- Low speed engine
- Medium speed engine
- High speed engine

Number of cylinders

- Single
- Two
- Four
- Six
- Eight
- Twelve

Arrangement of cylinders

- Straight or in line engine
- Horizontal engine
- Radial engine
- V engine
- Opposed cylinder engine

Method of governing

- Quality governing
- Quantity governing

Valve arrangement

- L-head
- I-head
- F-head
- T-head
- 3. Explain why cooling is necessary in an I.C engine? With neat sketches describe the working of water cooling system used for multi-cylinder. Why should a pump and thermostat be provided in the cooling system of an engine?

As a result of the combustion of fuel in the cylinders of the engine a considerable amount of heat is produced. All heat is not utilized as power at the crankshaft, with only about 20% of the heat being used as power at the crankshaft 35% of the heat is transferred to the cylinder walls which constitutes the power loss.

The heat should be prevented from being transferred to the cylinder walls as it causes the preignition of charge. Further, the lubricant might also burn because of the excessive heat. The burning of the lubricant in turn might lead to seizure of the piston.

While the engine is running, heat should be continuously removed from the engine. For this purpose, various methods of cooling the engine are utilized.

Water cooling system

In a water cooling system, water jackets are provided in the cylinder block and the cylinder head. Water fills up these jackets and the heart from the cylinder is transferred to the water in the jackets thus cooling in the cylinder.

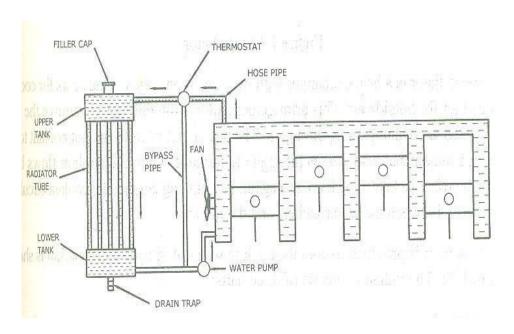


Fig: 2 Water Cooling System

When the water passes through the radiator, it is cooled by the cold air drawn by a fan. The cold water again reaches the cylinder block by means of thermo siphon system. However this method of circulation of water is not effective as the heat dissipated by the engine is so large that it is not possible to cool the engine quickly by the thermo siphon system. To enable faster cooling a pump is introduced in the system between the radiator and the engine block at the lower side. This pump is rotated by the crankshaft by means of a belt. When the pump, water is circulated with some force, in the positive direction. Therefore the heat of engine block is removed quickly without any difficulty.

Water pump

A pump is used in the water cooling system for increasing the velocity of the circulating water .Water pump is rotated by the crankshaft through a v-belt.

Thermostat

It consists of a metallic part, which either expands or contracts when it comes in contact with hot or cold water. When the valve comes in contact with cold water, it closes. When the water is hot, the valve rises above its seat and hot water passes through the valve to the radiator. The principle of braking up and mixing the fuel with the air is called carburetion.

4. Explain the working principle of Simple carburetor with a neat sketch..

Functions of carburetor

- It maintains a small reserve of petrol in the float chamber at a constant head
- It atomizes and vaporizes the fuel
- It prepares a mixture of petrol and air in correct proportions
- It supplies a fine spray of petrol
- It produces a homogeneous mixture

Simple carburetor

The main components of simple carburetor are: float chamber, float, nozzle, venture, throttle valve, inlet valve, and metering jet. In the float chamber, a constant level of the petrol is maintained by the float and a needle valve.

The float chamber is ventilated to atmosphere. This is used to maintain atmospheric pressure inside the chamber. The float which is normally a metallic hollow cylinder rises and closes the inlet valve as the fuel level in the float chamber increases to certain level.

The mixing chamber contains venture, nozzle, and throttle valve the venture tube is fitted with the inlet manifold. This tube has a narrow opening called venture. The nozzle keeps the same level of petrol as that of the level in the float chamber. The mixing chamber has two butterfly valves. One is to allow air into the mixing chamber known as choke valve. The other is to allow air –fuel mixture to the engine known as throttle valve.

Working

During the suction stroke, vacuum is created inside the cylinder. This causes pressure difference between the cylinders and d outside the carburetor. Due to this, the atmospheric air enters into the carburetor. The air flows through the venturi. The venturi increases the velocity of air enters into the carburetor. The flows through venturi. The venturi increases the velocity of air and reduces the pressure. This provides the partial vacuum at the tip of the nozzle. Because of this vacuum, the fuel comes out from the nozzle in the form of fine spray. These fine fuel particles mix with the incoming air to form air –fuel mixture. Thus, it gives homogeneous mixture of air- fuel to the engine.

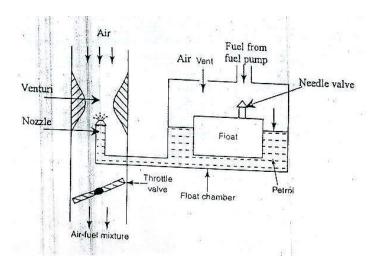


Fig:3 Simple Carburettor

5. Compare four stroke and two stroke cycle engines.(Dec-11)

FOUR STROKE ENGINE:

- Power is developed for every two revolutions of the crankshaft
- Consists of valves, camshafts and tappets.
- For the same size, power is less for same number of revolutions.
- There is one working stroke for every two revolutions of the crankshaft.
- There are many moving parts and hence there is more friction and less mechanical efficiency.
- The exhaust gases are fully burnt and leave as the exhaust. Therefore has more output.
- Engine is water cooled.
- Used in cars and commercial vehicles.
- The engine uses less lubricating oil.

TWO STROKE ENGINE:

- Power is developed for every one revolutions of the crankshaft.
- Consists only of ports with no valves, camshaft and tappets.
- For the same size, power is more for the same of revolutions.
- There is no working stroke for every revolution of crankshaft.
- There are few moving parts and hence there is less friction and more mechanical efficiency.
- Some amount of fresh charge mixes with the exhaust and leaves the exhaust. Therefore the engine has less output.
- Engine is air cooled.
- Used in motor cycles, scooters and small boats.

6. With a neat diagram explain the working of battery ignition system.(May/June-12, Nov/Dec-13) The

ignition system starts the combustion process in a spark – ignition close to the end of the compression stroke.

Types of ignition system

- Battery ignition system
- Magneto ignition system
- Electronic ignition system

Battery ignition system or coil ignition system

Passenger cars, light trucks and some motorcycle are fitted with battery ignition system.

A battery ignition system consists of a battery, ammeter, switch, ignition coil, condenser, cam, contact breaker points, distributor and spark plugs. The positive terminal of the battery and condenser and one terminal of each spark plug are all earthed to the metal body of the engine.

The primary ignition circuit consists of the battery, ammeter, switch, primary winding and the contact breaker points which are connected to earth. A condenser is connected to the contact breaker points in parallel. One of the condenses is connected to the contact breaker points and the other end is earthen.

The secondary ignition circuit constitutes the secondary winding, distributor and spark plugs, which are returned to earth. High tension voltage of about 25000v to 30000v is required to jump the gap plug and produce the spark. The ignition coil is used to step up the battery voltage ranges from 6v to 12v high tension

voltage. The spark produced by the high tension voltage ignites the mixture of air and fuel in the combustion chamber of the cylinder.

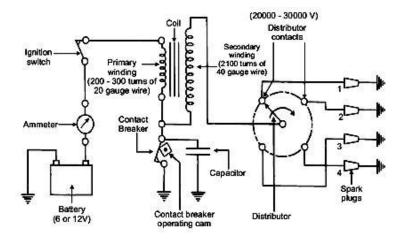


Fig: 4 Battery Ignition System

The rotation of the distributor rotor sends the current to four segments. These segments in turns send the current to the spark"s plug.

The condenser protects the breaker point by reducing the arcing at the breaker points. For the ignition system of four –cylinder engine, the cam of the contact breaker has four projections which are called lobes. For every revolution of the cam, the primary circuit is completed and broken four times.

When the ignition switch is turned on, current passes from the battery through the primary winding and magnetic field is produced in the coil. When the cam opens the contact breaker points, the magnetic field collapses and the current is induced in the secondary coil. The voltage is stepped by the secondary coil to 30000v. The distributor supplies this high voltage to the proper spark plug. The voltage produces a spark in the spark plug which ignites the combustible mixture of air and fuel in the cylinder.

7. Explain the pressure feed lubrication system with neat diagram? (May-11,14)

The supply of lubricating oil between the moving parts of motor vehicles is called lubrication.

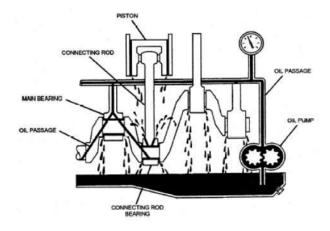
Significance of lubricants

- To reduce friction
- To reduce wear
- To provide cooling effect
- To provide cleaning action

- To provide cushioning effect
- To provide sealing

There are five system of lubrication

- Petrol system
- Splash system
- Pressure- feed system
- Combined splash and pressure feed system
- Dry sump system


PRESSURE FEED SYSTEM:

In the pressure feed system, oil is forced is forced with sufficient pressure to enable it to reach even the smallest clearances.

The clearance between the surfaces of the rotating parts of the engine is generally less than 0.001mm. The value of clearance is same for the engine parts moving to and fro. The splashed oil does not have enough force to reach inside such small spaces. Therefore oil is forced with sufficient pressure so that it reaches small clearance.

An oil pump is used in the pressure feed –system. The oil pump is operated by the crankshaft and is placed in the oil pump. Oil is pumped from the oil sump with sufficient pressure through the oil lines.

The leaves through the outlet of the pump and first reaches the oil distributor. Pipes from the distributor convey the lubricating oil to the various parts of the engine.

Fig: 5 Pressure Lubrication System

One of the pipes leading from the distributor, supplies oil to main bearings of the crankshaft. Through the holes drilled through the crankshaft and crankpin bearings, oil passes through the main bearings into the crank-arms. The oil finally reaches the crankpin bearings. A hole is drilled in the central portion of the connecting rod. Once the lubricating oil reaches the crankpin bearings, it is passed through the holes in the connecting rod. Finally it reaches the gudgeon bearings, from where it splashed under the pressure from the hole of the connecting rod and gudgeon pin bearings. The oil lubricates the cylinder walls from where the oil drips into the sump.

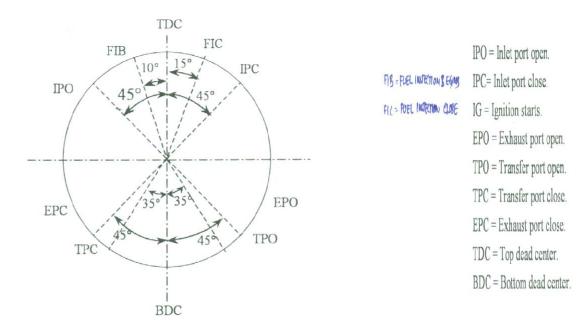
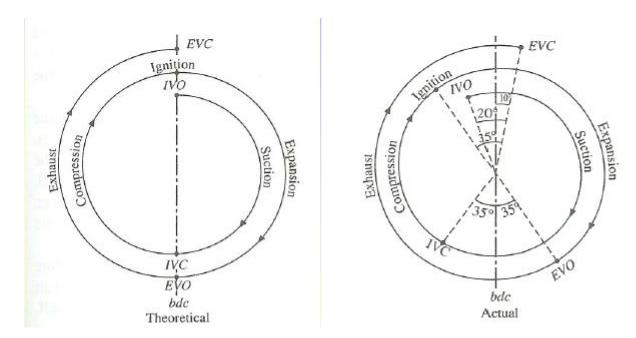

Another pipe supplies oil from the oil distributor under pressure to the timing gears and chain. Once the timing gears are well lubricated, oil returns to the oil sump.

Figure shows the pressure-feed lubricating system in a complete form for a four cylinder in-line engine an oil pump takes the lubricating oil from the wet sump through the strainer. This oil then passes through the filter and reaches the main oil line at a pressure of 200 to 400kpa and lubricates various parts of the engine.


7. Explain the main difference between a 2-stroke and 4- stroke cycle engine. (MAY/JUNE 2012)`

S:NO	PETROL ENGINE	DIESEL ENGINE
1	During the suction stroke, air fuel mixture is	During the suction stroke, air is only drawn
	drawn from carburettor.	from the atmosphere.
2	Carburettor is used to mix the air and fuel in	Fuel injector is required to inject the fuel into
	required proportion.	cylinder in atomized form.
3	Spark plug is required to ignite the fuel air	Fuel is ignited automatically by high pressure
	mixture.	and temperature air.
4	It is operated by Otto cycle or Constant	It is operated by Diesel cycle or constant
	volume cycle.	pressure cycle.
5	Compression ratio varies from 6to8.	Compression ratio varies from 12to18.
6	The starting is easy due to low compression	The starting is little difficult due to higher
	ratio.	compression.
7	Running cost is high because of high cost of	Running cost is less because of lower cost of
	fuel.	fuel.
8	For the same power, less space is required.	For the same power, more space is required.

8. Draw the port Timing diagram of two stroke cycle diesel engine. (May/June-2013)

9. Draw the valve timing diagram for 4- stroke cycle spark ignition system. (May/June-2012)

10. Explain the construction and working of a fuel injector with a neat sketch. (May/June-2013,14)

• The function of the fuel injection system is to provide the right amount of fuel at the right moment and in a suitable condition for the combustion process.

- There must therefore be some form of measured fuel supply, a means of timing the delivery and the atomisation of the fuel.
- The injection of the fuel is achieved by the location of cams on a camshaft. This camshaft rotates at engine speed for a two-stroke engine and at half engine speed for a four-stroke.
- There are two basic systems in use, each of which employs a combination of mechanical and hydraulic operations. The most common system is the jerk pump; the other is the common rail.
- A typical fuel injector is shown in Figure, It can be seen to be two basic parts, the nozzle and the nozzle holder or body.
- The high-pressure fuel enters and travels down a passage in the body and then into a passage in the nozzle, ending finally in a chamber surrounding the needle valve.
- The needle valve is held closed on a mitred seat by an intermediate spindle and a spring in the injector body. The spring pressure, and hence the injector opening pressure, can be set by a compression nut which acts on the spring.
- The nozzle and injector body are manufactured as a matching pair and are accurately ground to give a good oil seal. The two are joined by a nozzle nut.
- The needle valve will open when the fuel pressure acting on the needle valve tapered face exerts a sufficient force to overcome the spring compression. The fuel then flows into a lower chamber and is forced out through a series of tiny holes.
- The small holes are sized and arranged to atomise, or break into tiny drops, all of the fuel oil, which will then readily burn. Once the injector pump or timing valve cuts off the high pressure fuel supply the needle valve will shut quickly under the spring compression force.
- All slow-speed two-stroke engines and many medium-speed fourstroke engines are now operated almost continuously on heavy fuel. A fuel circulating system is therefore necessary and this is usually arranged within the fuel injector.
- During injection the high-pressure fuel will open the circulation valve for injection to take place. When the engine is stopped the fuel booster pump supplies fuel which the circulation valve directs around the injector body.
- Older engine designs may have fuel injectors which are circulated with cooling water.

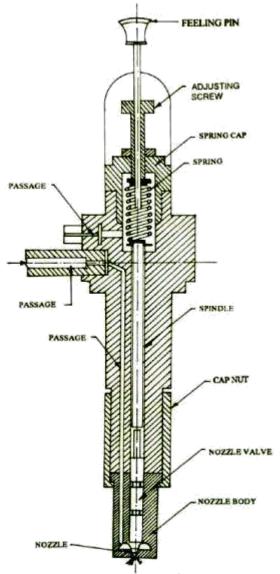


Fig. Fuel injector

16 MARKS: PROBLEMS

1) A four stroke petrol engine has a piston displacement of 2210 cm/cube. The compression ratio is 6.4, the fuel combustion is 0.13 kJ/min.The calorific value of fuel is 45000 kJ/kg.The brake power developed while running at 2500 rev/min is 50.25kW.Determine the brake mean effective pressure and the relative efficiency based on brake thermal efficiency. [Dec-07] GIVEN:

N=N/2

=2500/2

=1250rpm

=20.83 rps

Vs=2210cm/cube=l*a

R = 6.4

Fc=0.13kg/min=7.8kg/hr

Cv=45000 kJ/kg

N=2500 rpm

B.P=50.25 kW

Find:

- i) BMP=?
- ii) Net (relative based on brake thermal) =?

Solution:

$$As = (1-1/(6.4)0.4)*100$$

=52.4%

B.T=B.P*3600/fc*cv

=50.25*3600/7.8*45000

=51.53%

Net relative =0.5153/0.524*100

=98.33%

B.P= BMP lank

=1091.57 kN/m.sq

Result

B.P= BMP lank

=1091.57 kN/m.sq

2) An 4-stroke single cylinder gas engine developsn15.6 kW B.P at 240 rpm. Using the following data, find the relative efficiency of the engine gas consumption=12.57m³ measured at 1.05 bar and 15° c.

Cv of the gas =25 kJ/litre at 1bar and 0° c

[Dec-2006]

Cylinder dia =25cm

Stroke of the engine = 50 cm

Clearance volume = 4.5 litres

GIVEN:

N=N/2

B.P=15.6 kW

N=240 rpm

 $V_1 = 12.57 \text{m}^3/\text{hr}$

P₁=1.05bar $T_1=15^{\circ}c=288K$ C_v=25kJ/litre P₂=1 bar $T_2=0deg=273K$ D=25cm=0.25m L=50cm=0.5m $V_c = 4.5 litres$ =0.0045m₃ FIND: Relative efficiency=? SOLUTION: $V_s=3.14/4*d*d*l$ =3.14/4*0.25*0.25*0.5 $Vs = 0.02454m_3$ R=v1/v2=vc+vs/vc =0.0045+0.02454/0.0045R=6.45As=(1-1/(r) r-1)*100

, , , ,

As=52.55%

P1v1/t1 = p2v2/t2 = v2 = p1v1/t1*t2/p2

 $V_2 = 1.05*12.57**273/288$ $V_2 = 12.51 \text{m}^3/\text{hr} = \text{fc}$ B.T = B.P*3600/fc*cv = 15.6*3600/12.51*25000 = 17.95% Relative = B.T/AS = 0.1795/0.5255 = 34.15%

Result:

Relative=34.15%

3)A four cylinder stroke cycle petrol engine 79mm bore, 132mm stroke develops 28.35 kW brake power while running at 1450 rpm and using a 20% rich mixture if a volume of air into the cylinder when measured at 15.5° c and 760mm of mercury is 70% of the swept volume the theoretical air fuel ratio is 14.8 the heating volume of petrol used is44000 kJ/kg and the mechanical efficiency of the engine is90% find the indicated thermal efficiency, take R=0.287kJ/kgK, the brake mean effective

power. [May-06, May-11)

GIVEN:

N=n/2

D=79mm=0.079

L=132=0.132m

B.P=28kW

N=1450 rpm

N=725rpm=n/2

=12.08rps

Cv=44000kJ/kg

Mech=90%

R=0.287kJ/kg.K

Using 20% rich mixture

T=15.5deg c

=288.5 K

Volume of air drawn=70% vs

P=760mm of mercury.

 $M_a/m_f=14.8$

 $C_v=44000kJ/kg$

FIND:

I.T=?

Bmp=?

SOLUTION:

Vs=3.14/4*4*4*1

=3.14/4*0.079*0.0079*0.132

Vs=6.4702*10-4 m₃

Volume of air drawn=70/100*vs

=70/100*6.4702*10-4

=4.529*10-4 m₃

Pv=mrt

m=pv/rt

P=760 mm of mercury=1.01325 bar

 $=101.325 \text{ kN/m}_2.$ M=101.325*4.529*10-4/0.287*288.5=5.542*10-4*725*4 =1.60727 log/min Ma=96.436 kg/hr Ma/mf=ma/fc=14.8=fc=ma/14.8 =6.5159kg/hr =6.5159*1.2 =7.81915kg/hr Mech=B.P/I.P I.p=B.P/mech I.P=28.35/0.9 =31.5 kWI.T=I.P*3600/fc*cv=3.15*3600/7.81915*44000 I.T=32.96% ii) B.P=pmb*la*nk pmb=B.P=28.85/0.470*10-4*12.08*4 $906.79\;kN/m_2$ Pmb=9.067 bar **RESULT:** i) I.T=32.96%

ii) Bmp=9.067 bar.

6. Discuss the construction and working principle of a four stroke engine with neat sketch. (Nov/Dec-13)

Working principle of Four stroke cycle Petrol Engines.

Construction:

- A piston reciprocates inside the cylinder
- The piston is connected to the crank shaft by means of a connecting rod and crank.
- The inlet and exhaust valves are Mounted on the cylinder head.
- A spark is provided on the cylinder Head.
- The fuel used is petrol

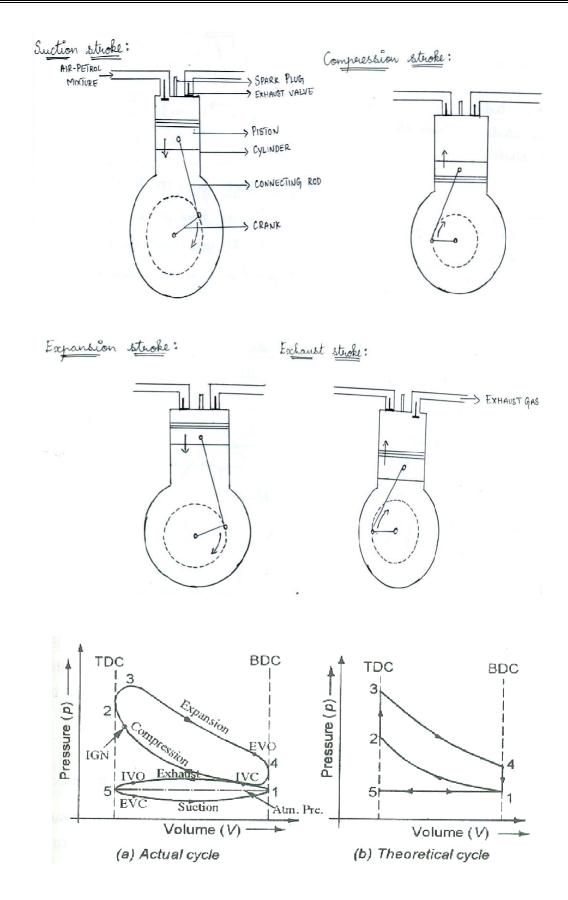
(a) Suction Stroke (First Stroke of the Engine)

- Piston moves down from TDC to BDC
- Inlet valve is opened and the exhaust valve is closed.
- Pressure inside the cylinder is reduced below the atmospheric pressure.
- The mixture of air fuel is sucked into the cylinder through the inlet valve

(b) Compression Stroke: (Second Stroke of the piston)

- Piston moves up from BDC to TDC
- Both inlet and exhaust valves are closed.
- The air fuel mixture in the cylinder is compressed.

(c) Working or Power or Expansion Stroke: (Third Stroke of the Engine)


- The burning gases expand rapidly. They exert an impulse (thrust or force) on the piston. The piston is pushed from TDC to BDC
- This movement of the piston is converted into rotary motion of the crankshaft through connecting rod.
- Both inlet and exhaust valves are closed.

(d) Exhaust Stroke (Fourth stroke of the piston)

- Piston moves upward from BDC
- Exhaust valve is opened and the inlet valve is closed.
- The burnt gases are forced out to the atmosphere through the exhaust valve (Some of the burnt gases stay in the clearance volume of the cylinder)
- The exhaust valve closes shortly after TDC
- The inlet valve opens slightly before TDC and the cylinder is ready to receive fresh charge to start a new cycle.

Summary:

- Compression ratio varies from 5 to 8
- The pressure at the end of compression is about 6 to 12 bar.
- The temperature at the end of the compression reaches 250° C to 350° C

Actual cycle & Theoretical cycle for four stroke cycle S.I Engine

Working principle of four stroke cycle diesel Engines.

Construction:

- A piston reciprocates inside the cylinder
- The piston is connected to the crankshaft by means of a connecting rod and crank.
- The inlet and exhaust valves are mounted on the cylinder head.
- A fuel injector is provided on the cylinder head
- The fuel used is diesel.

(a) Suction Stroke (First Stroke of the piston)

- Piston moves from TDC to BDC
- Inlet valve is opened and the exhaust valve is closed.
- The pressure inside the cylinder is reduced below the atmospheric pressure.
- Fresh air from the atmosphere is sucked into the engine cylinder through air cleaner and inlet valve.

(b) Compression stroke (Second stroke of the piston)

- Piston moves from BDC to TDC
- Both inlet and exhaust valves are closed.
- The air is drawn during suction stroke is compressed to a high pressure and temperature

(c) Working or power or expansion stroke (Third stroke of the piston)

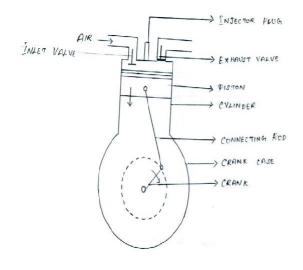
The burning gases (products of combustion) expand rapidly.

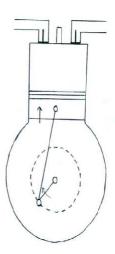
The burning gases push the piston move downward from TDC to BDC

This movement of piston is converted into rotary motion of the crank shaft through connecting rod.

Both inlet and exhaust valves are closed.

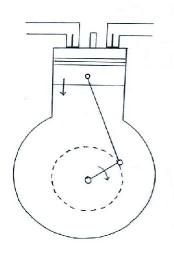
(d) Exhaust Stroke (Fourth stroke of the piston)

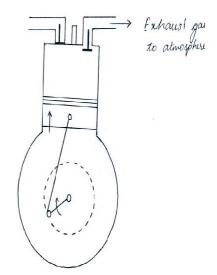

Piston moves from BDC to TDC

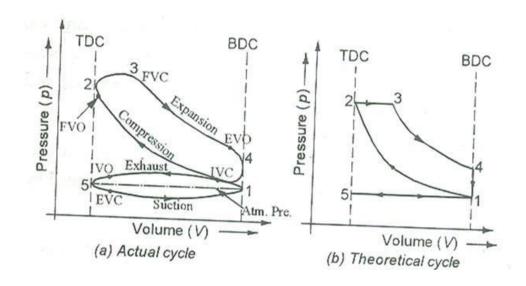

Exhaust valve is opened the inlet valve is closed.

The burnt gases are forced out to the atmosphere through the exhaust valve. (some of the burnt gases stay in the clearance volume of the cylinder)

The exhaust valve closes shortly after TDC


The inlet valve opens slightly before TDC and the cylinder is ready to receive fresh air to start a new cycle. **Suction Stroke: Compression stroke:**

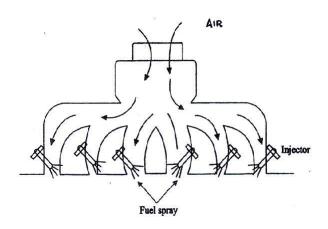



Expansion Stroke

Exhaust Stroke

Actual cycle& Theoretical cycle for four stroke cycle C.I Engine ::

17. Explain in detail the multi-point fuel injection system in petrol engines.

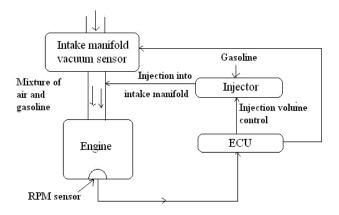

[Anna univ.dec'07, 08, June' 09, dec09, May'13]

A multi-point injection system, also called *port injection*, has an injector in the port (air-fuel passage) going to each cylinder. Gasoline is sprayed into each intake port and toward each intake valve. Thereby, the term multi-point (more than one location) fuel injection is used. Multipoint fuel injection

(MPFI) locates an injector immediately upstream of each inlet valve, which enables better control of the air/fuel mixture to each cylinder.

HOW MPFI WORKS?

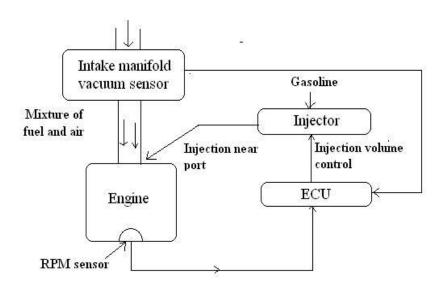
The MPFI system consists of one fuel injector placed near every intake valve and directed towards it, in the fuel intake manifold. Fuel is supplied to the injector through a common rail. The amount of air intake is decided by the car driver by pressing the gas pedal, depending on the speed requirement. The air mass flow sensor near throttle valve and the oxygen sensor in the exhaust sends signal to ECU. ECU determines the air fuel ratio required, hence the pulse width. Depending on the signal from ECU the injectors inject fuel right into the intake valve. The fuel sprayed at high pressure gets atomized into fine particles and get mixed with air. The air fuel mixture is sucked into the engine cylinder and the combustion takes place.


Multi point fuel injection

Types of MPFI System:

- 1. D-MPFI System
- 2. L-MPFI System

D-MPFI System:


D-MPFI measures the vacuum in the intake manifold. It also senses the volume of air by its density. D-MPFI is also referred to as D-Jetronics, which is a trade mark of Bosch. D-Jetronics is a word created from German word "Drunk" (pressure), and "Jetronics", a word coined by Bosch meaning "injection".

D-MPFI Gasoline Injection System

L-MPFI System:

L-MPFI directly senses the amount of air flowing into the intake manifold by means of an air flow meter. This system is used on analog circuit electronic fuel injection engines. L-MPFI is also referred to as L-Jetronics. The "L" comes from the German "Luft" meaning "Air".

L-MPFI Gasoline Injection System

Advantages over Carburetor:

- Improved atomization. Fuel is forced into the intake manifold under pressure that helps break fuel droplets into a fine mist.
- Better fuel distribution. Equal flow of fuel vapors into each cylinder.

- Smoother idle. Lean fuel mixture can be used without rough idle because of better fuel distribution and low-speed atomization.
- Lower emissions. Lean efficient air-fuel mixture reduces exhaust pollution.
- Better cold weather drivability. Injection provides better control of mixture enrichment than a carburetor.
- Increased engine power. Precise metering of fuel to each cylinder and increased air flow can result in more horsepower output.
- Fewer parts. Simpler, late model, electronic fuel injection system have fewer parts than modern computer-controlled carburetors.

Advantage of M. P. F. I:

- More uniform A/F mixture will be supplied to each cylinder, hence the difference in power developed in each cylinder is minimum. Vibration from the engine equipped with this system is less, due to this the life of engine components is improved.
- No need to crank the engine twice or thrice in case of cold starting as happens in the carburetor system.
- Immediate response, in case of sudden acceleration / deceleration.
- Since the engine is controlled by ECM* (Engine Control Module), more accurate amount of A/F mixture will be supplied and as a result complete combustion will take place. This leads to effective utilization of fuel supplied and hence low emission level.
- The mileage of the vehicle will be improved